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The aim of this thesis is the construction of a general purpose simulation tool that can simulate
the elements found in an explosive system that include energetic (explosive) and inert (metal)
materials. The work presented is mainly two-fold: (1) a thermomechanical model for an energetic
material is developed based on a continuum model that uses two independent state variables to
represent the phase transformation and the extent of chemical reaction, and (2) a high-resolution
model is developed that simulates multi-material, multi-dimensional impact events (in which the
energetic material of the first part can be one element) involving detonation and explosion physics.
In the numerical model, we attempt to achieve high accuracy with Eulerian finite-difference methods
that use essentially non-oscillatory (ENO) scheme and level sets for handling the discontinuities of
the flow field, and the Runge-Kutta schemes for a high-order accurate temporal advancing.

The present continuum mechanical model of energetic material is thermodynamically self-
counsistent and can describe a material that undergoes phase transitions from solid to liquid to
gas with exothermic chemical reaction. In various limits, the material is a classical elastic solid, a
Newtonian viscous liquid, and a compressible gas.

When modeling systems with energetic material compound, one needs to consider regions where
different materials are in physical contact with each other whether the neighboring material is
another explosive or a non-reacting inert material. Also one must properly model the material
interfaces. These interfaces are tracked by the level set function, introduced as a passive scalar
that the continuous pressure and normal velocity conditions are implicitly enforced across these
boundaries. Two neighboring materials of distinct equations of state can be brought to contact
while their contact surface may evolve according to the local particle velocity.

Because the framework in which the simulation tool is developed is quite general, we expect a
wide application of our model to many challenging multi-material physics problems. Standard
shock-tube tests with distinct gases are conducted for one-dimensional validations. In multi-
dimensions, we consider the Taylor impact of a copper rod and explosive rate-sticks and obtain
good qualitative and quantitative agreement with the benchmark results. Other simulations are
developed that simulate the explosive welding of copper and steel plates and a plate-cutting exper-
iment.

The thesis outline is as follows: (i) derivation of continuum laws of energetic materials and ex-
amination of the model in relation to classical equilibrium thermodynamics in a quasi-static limit,
(ii) specialization to simple motions and numerical analysis of dynamics and transitions of a rep-
resentative explosive, HMX, (iii) development of multi-dimensional, multi-material hydrodynamic
impact code using the continuum laws of energetic materials, (iv) application of the multi-material
tool to a impact of ductile targets such as metals, and (v) some conclusions.
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Chapter 1

Introduction

Condensed phase energetic materials (EMs) are most typically room temperature organic solids that
bind substantial chemical energy in molecular bonds. Upon initiation of chemical reaction between
sub-molecular constituents within the solid, energy is released that is subsequently available to do
work or is converted into heat. The advantage of the condensed phase explosive is that the energy
per unit volume is approximately a thousand times higher than its pre-mixed, gaseous counterpart.

Fundamental scientific questions surround the phenomena of ignition and release of energy in
these energetic materials subject to impact with a piston, or due to a rapid shearing motion. At
high impact speeds (typically on the order of 1000 m/s), simple hydrodynamic models give an
adequate description for both ignition and transition to detonation. Hydrodynamic models are
expressed in the form of the Euler equations for reactive gas dynamics. At lower impact speeds
(typically below 1000 m/s), one must fully take into account the solid nature of the materials. Thus,
a simple Euler equations with chemical kinetics are insufficient to describe a material undergoing
phase transformation, dissipation and localization of strain energy, plastic hardening, and thermal
softening. A successful model must also be able to describe three-dimensional stress distributions
as the material changes from solid to liquid to gas.

Modeling the phase change from solid to liquid to gas involves positing of balance laws additional
to the basic continuum laws of mechanics. Gurtin [33]* has argued for a separate balance of
configurational forces acting near the boundaries separating pure phases in the volumetric bulk.
The argument for such configurational forces is similar to those used to explain classical surface

tension forces. Those forces do work, and thus the work related to the configurational forces must

“References are listed alphabetically by author beginning on page 231.



be accounted for in the overall energy balance. Representative of three distinctly pure phases, the
order parameters of phase field variables are assigned ¢ = 0, 1, and 2 for solid, liquid and gas phases
of a material.

The second law of thermodynamics (the Clausius—Duhem inequality) restricts the form of the
constitutive theory so that the rate processes are entropy increasing. In particular, the energy
equation becomes so rich as to account for many additive terms of the Helmholtz free energy
as posed before the second law restriction. Various parts associated with the energies are ¢ =
Pthermal T Yreaction + ¥Yphase T Ygradient t Yelastic T Yplastic: This explicit partitioning of the
Helmholtz free energy is a key aspect of the model in this work.

Previously Ruderman [61] attempted to derive the evolution equations of both phase variable,
@, and the extent of exothermic chemical reaction, A\, using the configurational balance law posited
like the mass, momentum, and energy conservation laws. As we began re-deriving the continuum
equations of energetic material, we found that the evolution equation of A did not emerge from
the configurational balance argument in a manner that was consistent with standard derivations
in combustion theory. But it was possible to posit the evolution equation instead. As a primitive

balance law, we write
pr =V - s+ pQ, (1.1)

in the same manner as found in combustion theory. The vector s is the flux of mass of reacted
species per unit area per unit time and p€) is the instantaneous rate of creation of mass of the
reacted species per unit volume. Then A is recognized as the mass fraction of product species for
a simple exothermic reaction. Further, by direct correspondence with the standard combustion
equations, one can interpret s = pAV where V is the velocity of the product species, and where pA
is the partial density fraction of the same product. Hence, in this new approach, only the evolution
equation for ¢, the phase order parameter, emerges from the configurational balance law, and the
A-evolution equation is instead invoked based on combustion theory.

With the combined model written down in a thermodynamically consistent framework with
both ¢ and A evolution laws specified, we then build a numerical study tool by which many of the

interesting physics embedded in this rich model can be observed. We first considered the physical



setup of the simulations representative of actual shock impact and shear impact experiments. In
the case of thermomechanical loading of EMs, we considered HMX, typically used solid propellants
in explosions. Due to its vast experimental data availability, HMX is used as a baseline EM in our
study. Loadings due to a low-speed impact—Dboth longitudinal and shearing motions—are studied.
In both experiments, the regions of pure phase are maintained away from the phase transition
boundaries, and the material acts as a pure solid or fluid in the pure phase regions.

When EMs are placed in physical contact with other materials (both inert and reactive), the
proper numerical modeling of EMs often becomes a very challenging task. In the second half of the
thesis, we develop a modern approach to handle multi-material contact problems involving energetic
materials, condensed gas, elasto—plastic metals, voids or vacuum, and compressible fluids. The idea
of convecting a level set scalar in the flow of conservation variables is the underlying principle in
tracking the material (contact) interfaces that, by definition, advect with the local particle velocity.
In the final form of the unified fluid/solid code, each layer represents a different material with
possibly different equations of state. Each material communicates with the neighboring materials by
the continuous pressure and normal velocity. Since the code is based on the Eulerian configuration
using finite differences as the basic spatial discretization, any wave that ‘crosses’ the nodes (or cells)
will be captured by the high-order shock-capturing scheme (e.g. ENO scheme). Our hydrocode
is capable of resolving the discontinuities of the flows in either solids or fluids, which include
shocks, phase boundaries, shear bands, and detonation. This Eulerian methodology eliminates
mesh distortions that are often found in the Lagrangian finite-element approach. We develop
third-order temporal accuracy to resolve transients.

In the past, hydrodynamic codes have been developed that model multi-dimensional, multi-
material, high-rate of deformation, strong shock wave physics [45], [38], [34], [8]. In particular, CTH
is a 3-D shock wave physics code from Sandia National Laboratories, Albuquerque, New Mexico, and
it has been successfully applied to a large variety of strong shock problems, such as hypervelocity
impact and effects of detonating high explosives. Many of the analytic and tabular equations
of state (EOS) with solid, liquid, vapor, gas-liquid mixed phase and solid-liquid mixed phase
capabilities were used in the model [46]. Similar hydrocodes have been developed at Los Alamos

National Laboratory. The high-speed flow models are MESA (a precursor) [34] and PAGOSA,



a multi-material hydrocode. Both simulate high-speed and high-rate material deformation and
are based on finite difference approximations on an Eulerian mesh. PAGOSA is well-suited for
modeling transient flows involving multiple immiscible fluids and/or distinct materials experiencing
large distortion [38]. In general, the conservation of mass, momentum, and energy across the ‘fixed’
interface at each increment of time is achieved in two steps: a Lagrangian step where the cell distorts
to follow the material motion followed by a rezone step where the distorted cells are mapped back
to the Eulerian mesh. Benson [6] has an excellent comprehensive review on the modern high-speed
flow models, and interested readers are referred to that reference.

In our current Eulerian approach to constructing a multi-material, high-rate material deforma-
tion code that can include detonating explosives, we attempt to reproduce the capabilities of the
other codes in wide use. Our approach is based on high-resolution methods using fourth-order con-
vex ENO for the spatial discretization and third-order TVD Runge-Kutta for time advancement.
The treatment of interfaces is simple and made robust by the use of a level set function so that
there is virtually no ‘extra’ difficulty involved in keeping the jump conditions across the material
interface by solving a scalar hyperbolic equation in ¢, the passive scalar introduced in the model.
The underlying global scheme based on the method of lines enables us to treat multi-dimensional
calculations without time splitting, as often used in most of the hydrocodes, and allows an easy
and efficient implementation of Runge-Kutta scheme at orders higher than two. An elegant use
of level sets and ghost-node-populating techniques are especially useful to handle multi-material
interfaces.

The physical models in our code currently include models for compressible hydrodynamics, an
ideal equation of state (EOS) for a compressible gas, high-explosive (HE) EOS using the ABS model
[2], Mie—Gruneisen EOS for solid, Blatz—Ko rubber elasticity, elasto—plastic metal deformation with
isotropic linear hardening and Johnson-Cook hardening laws, and chemical kinetics of energetic
materials.

The capabilities of the hydrodynamics model and the high-resolution numerics with level set
interface tracking are tested through several examples and validations. First, we consider validations
by a pair of shock tube tests with two different gases and we demonstrate the spatial rate of

convergence of the high-order scheme. To test the reactive Euler solver properly, we reproduce the



one-dimensional detonation wave structure based on the ABS model described in Ref. [2]. The third
numerical validation includes a benchmark test result of rod impact. A well known Taylor copper-
rod impact test is simulated by our code and the result is compared against others’ results. A
fourth validation computes a rate-stick experiment involving HE/Inert. The rate-stick is a stick or
slab of explosive confined by inert material. The stick is initialized by a high pressure/temperature
region and a curved detonation wave emerges and propagates down the axis of the stick. The
steady detonation speed and the angle of inert shock transmitted through the material interface
are checked against a similar benchmark computation by Aslam [1].

Following these validations, capabilities of the current multi-dimensional hydrocode are pushed
to its limit by applying the model to a handful of problems of our current interest in the mechanics
of detonation physics. First, we simulate a bit more ambitious rate-stick experiment involving
HE, copper, and void interfaces. We can observe how the copper layer is deformed due to the
strong shock. Next, we simulate explosive welding of copper and high-strength steel plates initially
unbound. Upon detonating a coat of explosive on the outer layer of the copper, the two metals
come in contact in both shear and impact motion to cause a Kelvin—Helmholtz instability at the
material interface. The final application of the model is found in the two-dimensional metal-plate-
cutting experiment. A plate of thickness 5 mm is impacted by a spherically propagating detonation
wave. Intermediate and final deformations of the metal plate are of interest while the plastic strain
distribution upon the penetration of the detonation wave serves to characterize the strength of the
plate in this severe loading scenario.

The content of this thesis is arranged as follows. Chapter 2 deals with the thermomechanical
modeling of energetic materials. Tools of thermomechanics [22] are used to derive a set of continuum
equations representative of energetic materials. Chapter 3 examines the behavior of a thermome-
chanical model posed in Chapter 2 and specifically analyzes three simple motions: (i) Constant
volume evolution, (ii) One-dimensional, time-dependent longitudinal compression (expansion), and
(iii) One-dimensional, time-dependent shear. In Chapter 4, we start two-dimensional calculations
of multi-material high-low speed impact by considering the Blatz—Ko rubbery material in contact
with other similar materials of different density or a compressible gas. In an effort to accommo-

date ductile model other than the rubber elasticity of HE, we develop a metal plasticity model in



Chapter 5. In doing so, we revisit a standard derivation of incremental constitutive laws of the
elasto—plasticity, which we use in addition to the conservation equations to simulate ductile impact.
Basically, two additional evolution equations for effective plastic strain (a scalar) and the deviatoric
stress (tensor) are developed. A very complex physics involving a point-source detonation pene-
trating a metal plate is simulated with the current code, illustrating many promising results that
are very sensible. Finally, conclusions and suggestions for future research are given in Chapter 6.
Contents of Appendices are as follows: (A) list of p-dependent functions, (B) special forms of
continuum equations of EMs, (C) structure analysis of steady phase transformation waves, (D) ther-
modynamics for the energetic materials model, (E) the representation of the continuum equations
of EMs in spatial configuration and a representation of the same equations in the Lagrangian con-

figuration, (F) derivation of sharp-interface theory from the phase-field theory of our phase model.



Chapter 2

Thermomechanical Model for
Energetic Materials

This chapter presents a thermodynamically self-consistent model that can describe a material that
undergoes phase transitions from solid to liquid to gas with exothermic chemical reaction. The
model development is quite basic and is likely to have wider application, but the motivation for the
study is to describe the behavior and properties of energetic materials such as condensed explosives
and solid propellants.

Condensed-phase energetic materials (EMs) are most typically room temperature organic solids
that bind substantial chemical energy in molecular bonds. Upon initiation of chemical reaction
between sub-molecular constituents within the solid, energy is released that is subsequently available
to do work or is converted into heat. The advantage of the condensed phase explosive is that the
energy per unit volume is approximately a thousand times higher than its pre-mixed, gaseous
counterpart.

For the purposes of illustration and to help us develop a conceptual framework, we will consider
the energetic material HMX, [CHy — N(NO,)],, [52] (a solid explosive compound), to be a base-line
energetic material. HMX is solid at room temperature and pressure and, when fully chemically
decomposed, forms gaseous products that are simple gases such as water vapor, carbon dioxide, and
molecular nitrogen. There are thousands of known energetic (explosive) compounds, so our choice of
HMX is both practical (because of its wide use) and representative, in that nearly all the modeling
issues considered here apply to similar materials. Fundamental scientific questions surround the

phenomena of ignition and release of energy in these materials (EMs) subsequent to impact with



a piston, or due to a rapid shearing motion. At high impact speeds (typically on the order of 1000
m/sec), simple hydrodynamic models give an adequate description for both ignition and transition
to detonation. Hydrodynamic models are expressed in the form of the Euler equations for reactive
gasdynamics [29], which balance kinetic energy, elastic potential energy, and the chemical energy
released by reaction. By virtue of the speed of collision and the short duration of the ignition
event, one can justify the neglect of other types of energy and their transfer. However at lower
impact speeds (typically below 1000 m/sec) one must fully take into account the solid nature of
the material. In contrast, models for lower-speed impact must reflect a large number of types of
energy and mechanisms by which energy in the condensed phases can be transformed, localized,
and dissipated. A successful model must be able to describe three dimensional stress distributions,
heat conduction, phase transformations, and chemical reaction as the material changes from solid
to liquid to gas.

Thus, accounting for the change in phase and chemical reaction is essential parts of modeling
the ignition of energetic solids. In a continuum modeling framework, one must add additional
thermodynamic state variables that reflect the internal degrees of freedom that measure the extent
of reaction and phase change in the material. Necessarily, one must posit additional balance laws
and provide the required constitutive theory to complete a model formulation. One does this by
using physical considerations (which may lie in the proposed model’s sub-scale physics) to pose
the required additional balance laws. For example in the case of classical combustion theory (see
Williams [76] for a representative discussion of the derivation of the commonly used equations
of combustion theory), the additional state variables that correspond to the internal degrees of
freedom are the mass fractions of all the independent chemical species. The additional balance laws
are literal statements of molecular mass balance for each independent species. Other constitutive
forms required to describe the evolution of the mass fraction variable are based on well-known
laws of collisional reaction (in the case of gaseous chemical reaction), Fickean diffusion, and so
on. Importantly, the added balance laws themselves have an identifiable molecular origin and are
directly related to physically unambiguous statements of mass balance. However, while the physics
at the molecular sub-scale is clear, the continuum-scale formulation embraces the added (partial)

mass conservation statements as primitive, physical laws that must be given by ansatz.



When modeling the phase changes from solid to liquid to gas, one must also have a physical
understanding of the molecular origins of state variables and constitutive forms that describe the
phase change. Omn the molecular scale a typical EM solid like HMX is comprised of nitrated
hydrocarbon molecules that reside in a highly ordered crystal lattice. Large quantity of energy is
released only if there is chemical reaction between smaller pieces of the molecule, juxtaposed or
dislodged by deformation, which subsequently release their chemical energy through elementary
exothermic reactions typical of those for the gas-phase chemistry. For example, the liquid phase of
HMX is known to be very reactive and short-lived compared with the solid phase; likewise HMX
vapor is extremely reactive [10], [13]. The liquid phase is molecularly less well-ordered than the
solid, with larger average inter-molecular distances than the solid. If correlated to the average
intermolecular spacing (say), the gas phase is even much less ordered than the liquid. Thus a
state variable (sometimes called an order parameter or a phase field variable) can be introduced to
reflect a continuum measure of molecular order of the condensed phases (solid crystalline and liquid
phases) and the gaseous phase. We will call the order parameter, or phase field variable, simply
the phase variable ¢, and assume that it is normalized in such a way that ¢ = 0 corresponds to a
solid, ¢ =1 a liquid, and ¢ = 2 a gas.

In this formulation, the precise relationship of non-integer values of a phase variable like ¢
to the molecular sub-scale structure of the material is somewhat ambiguous in contrast to the
unambiguous meaning of reactant mass fractions in combustion theory. In a more advanced theory
it is anticipated that ¢ will be assigned to specific molecular coordinates. Advances in molecular
dynamics of condensed phase systems do promise eventually to provide a more substantial basis for
physical assignment of the phase variables, possibly based on the average molecular spacing (say)
or other molecularly-based kinematic variables [20], [4].

Despite possible ambiguity in its precise physical interpretation, if a phase variable is to be used
in a model to represent an independent degree of freedom, it should be constrained by standard
principles found in the theory of continuum mechanics. In the regions where the phase is pure (i.e.
¢ = 0, 1, or 2) the material properties and the constitutive relations must describe the pure mate-
rial with the properties of that phase. We require that the formulation has a sense in which it is

thermodynamically and tensorially consistent. This formation allows further developments in a ra-



tional and systematic manner in three dimensions. We consider a simplified model of an EM (HMX
say) which we suppose has three relevant phases, a solid phase, a liquid phase, and a gas phase.
We assume that the path from solid to gas goes through the successive phase transformations, solid
to liquid to gas. Phase boundaries are to be represented by (typically thin) regions across which
the value of the phase variable changes from one constant to another. Also, we will use a single
(lumped chemistry) progress variable A, to describe the extent of exothermic chemical reaction A
with value A = 0 when no reaction has occurred and A = 1 when the reaction is completed. The
model allows chemical reaction in any phase.

A key aspect of the model is explicit partitioning of the energy associated with specific internal
(thermal) energy, chemical reaction energy, elastic potential (deformational) energy, and energies
associated with phase change, such as the enthalpies associated with melting of the solid and evap-
oration of the liquid, and potential energies stored at phase boundaries. The partitioning of the
energy is represented by a decomposition of the Helmholtz free energy, 1, into the various parts as-
sociated with the energies listed above, such that 1 = ¥ armal T Pelastic T Preaction T d’phase +
wgrad(phase)' The constitutive forms used for ¥ipermar and Yejqstic are found in discussions of
thermo-elastic materials. The constitutive forms for 9,pase and 9, 44(phase) contain the energies of
phase change and energies stored near phase change interfaces. The constitutive form for 9,eqction
can be found in discussion of pre-mixed combustible materials. The free energies and other con-
stitutive variables are allowed to depend on both the phase variable, ¢, and the reaction progress
variable, A, as well as the temperature, 7', and the deformation gradient, F', and the gradient of ¢,
6(,0. The governing equations are formulated by statements of conservation of mass, momentum,
energy, and evolution equations for the change in phase and progress of chemical reaction.

The treatment we use to describe the evolution of the phase variable follows classical treatments
that have arisen in the discussion of solidification (for example see [15]) but specifically follows a
consistent formulation pioneered by Gurtin [32]. Gurtin has argued for a separate continuum
balance of configurational forces acting near the boundaries separating pure phases in the volumetric
bulk. The arguments for including these additional forces may be justified by consideration of
short-range van der Waals forces, which typically are generated near phase boundaries due to local

changes in the intermolecular distances between molecules. The argument for such configurational
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forces is similar to those used to explain classical surface tension forces. The hypothesis is that if
the configurational forces act in the vicinity of the boundary near the change in phase and in the
bulk, they can be in balance, and if so they must not affect the overall (conventional) momentum
balances. Hence the force is posited as a basic law. However, with the postulate of a balance
of configurational forces comes the consequence that those forces do work. The working rate is
accounted for explicitly in the overall energy balance.

The second law of thermodynamics (the Clausius—-Duhem inequality) restricts the form of the
constitutive theory so that the rate processes are dissipative and entropy-increasing. An important
outcome of these arguments is the derivation of an evolution equation for the phase variable ¢ that is
essentially a Ginzburg-Landau equation with additional forcing terms. The evolution equation for
@ is a time-dependent, reaction diffusion equation that is amply capable of describing the pattern
formation associated with phase transformation. The richness of the resulting theory becomes
evident in the energy equation. Due to the decomposition of the Helmholtz free energy, the energy
equation contains contributions from all the different terms in the partition, and reflects the fact
that in the energetic material, energy is converted and distributed to many different forms such as
elastic, kinetic, internal, and phase gradient energy (stored in interfaces).

In the sections that follow, the development of the model is given, based on the continuum-
thermodynamic formulation described above. In Section 1 we review the continuum thermodynamic
formulation consistent with conventional combustion theory [76], [14], [50], [11], which specifically
includes a reaction progress variable. A (nonstandard) presentation of the Helmholtz energy de-
composition is given and the attendant standard arguments for restrictions placed by the second
law are given. In Section 2 we present a model for a material that changes from solid to liquid to
gas and present a Helmholtz free energy decomposition that is suitable to describe such a material,
subject to second-law restrictions. In Section 3, the combined model for an EM (with both phase
change and chemical reaction) is then presented. In Section 4 we discuss various limiting cases
of the model. We discuss the relationship of the model to classical quasi-static thermodynamics,
and illustrate examples based on fits to HMX properties to illustrate the dynamics of a phase
change that would be calculated in the classical theory. Section 5 presents special formulations

of the model equation for three important simple motions. These cases are: (i) Constant volume

11



evolution (which is a generalization of the classical constant volume explosion formulation found in
combustion theory), (ii) One-dimensional, time-dependent longitudinal compression (expansion),
and (iii) One-dimensional, time-dependent shear motion. The solution of the equations for these
three important cases for an HMX-like material is the subject of Chapter 3.

In what follows, a “c” subscript denotes a condensed phase, solid or liquid, an “f” subscript

=
S

denotes fluid—either liquid or gas, an subscript denotes solid, an “1” subscript denotes liquid

and a “g” subscript denotes gas. The spelled out subscripts “solid”, “liquid” and “gas” refer to
constant values for that pure phase. The notation is kept as simple as possible in an attempt
make the thesis easier to read. Boldface quantities can either be vectors or tensors. If obvious,

the constant arguments during differentiation are dropped. Our notation is standard, insofar as

possible, and follows a well-known text such as Bowen [11].

2.1 Kinematics

Let the Eulerian (spatial) coordinates of position in the lab frame be given by & and the Lagrangian
(material) coordinates initial position of the particles (or particle coordinates) be given by X. For
simplicity we will assume that X represents the initial position of material particles. Then the

mapping of the deformations that define the particle trajectory paths is given by
z=z(X,t). (2.1)

The deformation gradient F' is defined by the derivative

oz
F=oo (2.2)

and the velocity of particles v is defined by the time derivative of the particle trajectories v =
(Oxz/0t)x. The velocity gradient is L = Vw. Let the dot notation, 6, refer to the material
derivative. A standard identity, which can be verified by the previous definitions and the chain
rule, gives the material (particle-fixed) time derivative of the deformation gradient as F =LF.

A statement of conservation of mass in the material frame is that the ratio of the instantaneous
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density p of the particle to a reference (ambient) density of the solid py is equal to the determinant

of the deformation gradient:

2.2 Review of the thermomechanics for a simple model of a

reactive flow

The standard combustion model, for a pre-mixed mixture that can explode or burn, can be de-
rived from a simple mixture theory: see references [76], [14], [50], [11]. The combined model that
we introduce later incorporates the features of the standard combustion model, so we review its
derivation. Importantly, the reaction progress variable A represents a product reactant mass flux.
Hence A is treated differently than the phase variable ¢, which is introduced later to describe the
change in phase from solid to liquid to gas.

For the purpose of discussion, one assumes that there are only two distinct species, fuel and
product (say). The corresponding chemical reaction is written as F' — P+ Qy,. (heat). All physical
properties of the two species, such as the molecular weights, specific heats, conductivities, etc., are
assumed to be identical, save the heats of formation, the weighted difference of which is a heat of
combustion.

We start with the balance laws for conservation of mass, linear momentum and energy

b+ p(Tew) =0, (2.4)
pv = V-o+pf, (2.5)
pé = o:Vo—-V-q+pr. (2.6)

In the energy equation, r is a volumetric energy production term that typically represents radiation

or volumetric heating (or cooling) in combustion theory. The body force is given by f. In addition
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we invoke a primitive evolution law for the reaction progress variable A:
pA=V-s+pQ. (2.7)

The vector s is the flux of mass of reacted species per unit area per unit time and p€ is the
instantaneous rate of creation of mass of the reacted species per unit volume. Then A is recognized
as the mass fraction of the product species. Further, by direct correspondence with the standard
combustion equations, one can interpret s = pAV where V is the velocity of the product species
(say), and where p is the partial density fraction of the same product.

To these basic laws we add the second law of thermodynamics, the Clausius-Duhem inequality

pirz =9 (2)+ 9. () 4 2 (2.

where ()., the heat of combustion, is the exothermic energy release per unit mass, and the term
V- (@ 8/T) represents the entropy flux per unit volume per unit time associated with chemical

reaction.

2.2.1 Constitutive forms and restrictions

Next consider the classical forms and assumptions that lead to the combustion equations of pre-
mixed materials found in such texts as [76] and [14]. The formulation uses the Helmholtz free
energy, which is defined in terms of the internal energy and entropy as 9 = ¢ — T'r). We start with

the assumption that 1) is specified by

) = $(F,T,)) (2.9)

and we assume similar dependencies for e, 7, and all other thermodynamic variables. Next we
consider the implication of the entropy inequality and deduce various restrictions imposed by it on
the constitutive formulation.

If we use the definition of the Helmholtz free energy to get an expression for the entropy, as

n = (e — 1)/T, and take the material derivative, we obtain 1) = (¢ — ¢ — nT)/T. Using the form
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assumed above, the derivative ¢ appears as

Vot =T+ 5 0A

% p Y5 Yy
oF " or~ oA (2.10)

P =
Using this expression for 1[) and using the energy equation to replace é in the entropy inequality

lead to an intermediate result

Mo\ . MY VT 9y, -

We restrict our choice in constitutive theory to forms that will automatically satisfy this dissipation
inequality as the physical processes in the material range over all admissible deformations and
temperature fields. For example, since Vv can be regarded as an independent field, then in the

standard way we restrict the form of the stress tensor such that

81,b diss
2.12
where the dissipative stress a.diss’ satisfies 04158 ; Vo > 0. This last requirement is clearly satisfied
by the classical choice for a viscous fluid
odiss — ug(ﬁ ~0)I +2pyD (2.13)

where D = (ﬁfv + ﬁfvT) /2 and vy, pg are positive and are identified as the gas-phase bulk and shear

viscosities. The assumed form of the stress becomes

9

=p8—FFT+Vg(6-v)I+2ugD. (2.14)

In a similar fashion, since 7' is independent, we require that the Helmholtz free energy must

satisfy the Gibbs relation

@ _ (2.15)
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The entropy inequality is now satisfied if the following reduced inequality is satisfied:
A= QpV-s>0. (2.16)

If we assume that the change in the Helmholtz free energy with respect to the progress variable is
related to the heat of combustion (which also can be verified and put into direct correspondence

with forms derived in mixture theory of reacting gases, see [14], [50], [11]), that is,

0
o = Qhe. (2.17)

and use the evolution equation for the progress variable p)\ ~V-.s= L, then the reduced inequality

can be recast as

VT
—(@ = Qpes) 5 +pEpe 220, (2.18)

Finally we make the choice that the energy flux vector is the sum of a Fourier heat conductive flux

and a energy flux associated with the diffusion of the product species
q=—kVT+ Q. s, (2.19)

and require that, for an exothermic chemical reaction with Q. > 0, the reaction rate must be
positive with € > 0. With these restrictions the second law is automatically satisfied. Recall that s
represented the mass flux vector of the product species, s = pAV', where V is the diffusion velocity
of that species. Without further restriction we can make a standard assumption that the diffusion

velocity is related to the gradient of the species concentration through a Fick’s law relation by
s=pA\V =dV), (2.20)

where d > 0 is a diffusion coefficient.
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2.2.2 Temperature form of the energy equation

We present the temperature form of the energy equation in terms of a specification of the Helmholtz
free energy, in order to set the stage for later discussions. We use the definition of the specific
internal energy in terms of the temperature and the entropy, e = 1 +1'n, to obtain é = 1[) +77T+T1'7.
Next we use the form of the Helmholtz energy 1 (F, T, \) and the Gibbs relation n = —9v /9T to
generate expressions for 4 and 7] as

oY 0% - 0% .

8—¢FT:%+—T, M= F':Vo - oot

CTOF oT T OTOF

(2.21)

We then insert these expression into (2.6) and make some further simplifications. A collection of

terms appears that is associated with the stress-related dissipation

W 1\ . g, _ diss.
(a paFF>.Vv—0' :Vo.

Using the classical definition of the specific heat at constant deformation (volume)

n <82¢>
w=T—| =-T|=— , (2.22)
YT OT | ar? ) | g
we can re-write the energy equation as
. o . 5 82 .
pe,T =~V - q+ oW Vo + pTaTg/’FFT : V. (2.23)

The term pT' (824 /OTOF)FT : Vv is a stress work term classically associated with thermal stresses.
As we will see below in the case of gaseous combustion for ideal gases, this term is proportional to

the pressure work term —p (6 -v), where p = pR,T', and R, is the ideal gas constant.

The form of the Helmholtz free energy from classical combustion theory

To complete the classical formulation for pre-mixed combustion, one must specify the form of the
Helmholtz free energy. The forms can be extracted from the correct forms found in the binary

mixture theory of premixed gases, see [11], [76], [14], [50]. Let B = FF' be the left Cauchy—
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Green tensor and let Il = (pg/p)? be the third invariant of B. Then the form of the Helmholtz
free energy for a thermally ideal material, with the additional term required for the change in
enthalpy associated with combustion, is comprised of three parts: A thermal energy density ¢, =
[(T —Tp) — T In(T'/Tp)], a strain energy density associated with the temperature (which defines
the pressure in terms of the density and temperature) 9o = —1/2 R,T'In(Ill3) and the chemical

enthalpy 93 = —Qp.A. Thus the total free energy 1 = 91 + 12 + 13 is
1
P = cy(T —Tp) — ¢, T In(T/Ty) — §R9T In(/11B) — QpeA- (2.24)

It follows that the elastic part of the stress can be computed from this form of the free energy
and identifies the classical thermodynamic pressure p. In particular, we have that p(9y/0F)F" =
2p(0¢/0B)B = —pR,TI = —pl, which leads to the identification of the pressure p by the ideal gas
law, p = pR,T. Also the thermal stress work term is re-written p (9¢/0F)F7T : Vo = —p(V-wv).
The corresponding form of the entropy and the internal energy (obtained from the definition of the

Helmholtz free energy and the Gibbs relation) are given by
R
e =c(T —Ty) — Quer, 1= coIn(T/Ty) + 0} In(/11B). (2.25)

2.2.3 Summary of the governing equations for a pre-mixed reactive fluid

Here we summarize the results of the last section, which reduce to the classical form of the combus-
tion equations for a premixed combustible fluid. These equations incorporate the various restrictions
and constitutive forms that we assumed and are suitable for solving initial-value problems ordinar-
ily associated with the theory of pre-mixed combustion. The entropy (dissipation) inequality is not

included in our list since it is automatically satisfied by construction of the model. The equations
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for p,v,T and A are

p + pV-v=0, (2.26)

pv = V-o+pf, (2.27)

pe, T = V- (kVT)+ o : Vo —p(V-v) + P Qpe 2, (2.28)

pA = V-(dVA) +pQ, (2.29)

with the constitutive relation for the stress given by o = —pR,/T1 + Vgﬁ ~vl + 2puyD, with

oiss — ,,gﬁ -vl +2pyD, and with D = (Vo + Vol)/2.

2.3 Thermomechanics of a model of a material with phase

changes from solid to liquid to gas

Here we develop a model for a material that can undergo a phase change from solid to liquid to gas,
in preparation for the development of the combined model, which includes chemical reaction and
exothermic energy release. The important difference in the development in this section from that in
Section 2 is the introduction of a phase variable that is used to describe and delineate the separate
phases. In order to describe the phase transitions we introduce the (normalized) variable ¢ so that
¢ = 0 corresponds to the solid phase, ¢ = 1 to the liquid phase, and ¢ = 2 to the vapor phase. In
its pure phases, solid, liquid and gas, the material is prescribed by classical models for that pure
phase, i.e. a compressible elastic solid, a compressible Newtonian liquid, and a gas, respectively.
A consistent thermodynamic formulation for the model is developed through an extension of
a formulation proposed by Gurtin [32]. Energy expended by the system during phase change is
associated with configurational forces of two types, a configurational stress that acts at or near the
boundaries between phases, which is balanced by a configurational force distributed in the bulk.
The power expenditure of these forces must be accounted for in the energy balance. If one assumes
that the configurational forces in the material are balanced separately (this is a posited balance)
then the evolution of the phase field ¢ is constrained by the entropy inequality to be dissipative

and further considerations lead to the derivation of an evolution law for ¢. This is in contrast to
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the formulation of the last section, where we considered the evolution law for the progress variable
A as posited. Presumably, (and we have considered this in some detail that is not presented here)
an alternative to deriving the equation for ¢ is to pose an evolution equation as fundamental and
then derive the consequence of local balance for the configurational forces. Either way one comes to
similar physical conclusions. The consequences of this choice, in absence of better, physically-based
arguments, need to be judged against the forms of the resulting equation that allow us to solve
interesting initial-value problems.

The starting point is the form of the general laws. The differential form of the general law
for mass (2.4) and momentum (2.5) are unchanged from the previous section. We turn to the
more unfamiliar considerations of the force balance law associated with the phase change and

corresponding changes in the energy balance next.

Force balances associated with change in phase

Associated with the evolution of the phase variable ¢, we introduce a balance of configurational
stress &, a configurational internal force density m,. The integral form of the balance law for a

body in region B with boundary 0B is

/g CndA+ /(%) v =0, (2.30)

oB B

and with the use of the divergence theorem, the corresponding differential form of the balance law

is
V-¢+7,=0. (2.31)

Rate of work

The rate of work expended on B is due to the external forces acting on the surface and within the

volume of B. Gurtin [32] shows that the correct form for the rate of work due to all stresses is

W(P)=[(on-v+¢&- (¢n))dA+ [ bvdV. (2.32)
/ /
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The integral form of the energy balance can be written in the standard way as the material derivative
of the total energy (internal and kinetic) equated to the rate of work minus the energy flux out of

the body plus the rate of heating by any other source; thus

%/p(e+%|v|2)dV—l— =W—/q-ndA+/prdV. (2.33)
B oB B

To obtain the differential form we convert the surface integrals into volume integrals and use

the divergence theorem. The resulting integral must hold everywhere for all sub-volumes, so the

resulting integrand is set to zero, which leads to an intermediate differential form (not shown). We

then use the momentum equations and take its dot product with the velocity v to get the standard

work—energy statement on a material path and subtract that result from the above-mentioned

intermediate form to get the following form of the energy equation:
pé=—6-q+0‘:6’0+§-6(¢7)—ﬂ'¢¢+p7‘. (2.34)

The main difference from the classical form is the appearance of the two work terms & - 6((,0) and
—m,¢p that derive from the configurational forces. For upcoming considerations of the entropy
inequality, it is useful to use identities (which can be verified easily in Cartesian index notation) to

rewrite the term & - V() as
£-V(p) =V &+ VpRE: L, (2.35)
so that the revised energy equation reads

pé:—6-q+a:§v+6—<p-§+§<p®§:6v—mp¢+pr. (2.36)
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The entropy inequality

Finally, to these basic laws we must add the second law of thermodynamics, the Clausius—Duhem

inequality
. = (4 pr
piy> V- (T) + 2 (2.37)

Note that since ¢ is not assumed to be related to a partial mass density of material, there is no
entropy flux term such as V - (Qne 8/T) that appears in the combustion-based entropy inequality

(2.8). Equation (2.37) is the classical (inert) form of the entropy inequality.

Constitutive forms and restrictions from the entropy inequality

We restrict our attention to a general class of constitutive equations and start with a very general
assumption that the free-energy deusity 1, the Cauchy stress o, the configurational stresses &, the
internal configurational force m,, the entropy density 7, and the heat flux g at any point (z,t) are
dependent on the deformation gradient F', the temperature 7', the phase field ¢, the gradients 6T,

6(,0, and the velocity gradient L, such that we can write
¢ =(F,T,0,VT,Ve,L). (2.38)

We assume that o, &, m,, 7, and q all depend on the same argument list, (F, T, ¢, VT,Ve,L). We
use the definition of the Helmholtz free energy to get an expression for the entropy, n = (e — ) /T,
take the material derivative, then use the energy equation to replace é, and use the chain rule to

replace 1/) These substitutions into the entropy inequality leads to the intermediate result

8¢ T = R 81,0 r 81/) .
<a_p8—FF +V<p®§> .Vv—p<77+a—T>T— <w¢+p%)<p

N == < B, ) = <a¢) : vT
—p—— VT — ¢ Vo—p(Z2):L-—q-—>0. 2.39
= pavw 13 v=r |3 q 7 2 (2.39)

Again we restrict our choice of constitutive forms to those that automatically satisfy this dis-
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sipation inequality as the physical process in the material ranges over all admissible deformations
and temperature and phase fields. We restrict the form of the stress tensor such that

9

_ _FT__' diss 2.4
ey Vo€ + o, (2.40)

where again o%%* must be chosen to satisfy o@%s : Vo > 0. Later we will take %55 to be given by
(2.13), where the shear and bulk viscosities are taken to be functions of the phase field variable .
We require that the Gibbs relation be satisfied and that the configurational force £ be defined by

the derivative of the Helmholtz free energy with respect to the gradient of ¢ such that

o o
=——" and &=p—. 2.41
7 3T E=p 5o (2.41)

We also assume that the Helmholtz free energy is independent of L = Vo and the temperature

gradient VT so that

o A
— =0, and — =0, 2.42
oL ovT (242)

hold. We also suppose that the energy flux vector is described by a Fourier heat conduction law,
q= —kﬁT, and insist that k is a positive constant that can be a function of the temperature and

the order parameter, i.e. k(p,T) > 0. Then the reduced dissipation inequality now has the form

- (m + pg—?’/j) ¢$>0. (2.43)

The final form of the reduced dissipation inequality is satisfied if we require that the phase changes

be dissipative and if we allow 7, to take the form

0
- (mo+o5t) = B0 (2:44)

where B > 0. Equation (2.44) is an evolution equation for the phase variable ¢. Note that the

configurational force balance (2.31) defines m, = —V-¢, and with the configurational force identified
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by & = p(89/dV @), leads to Ty = —V - (pdy/dV ). Thus (2.44) can be re-expressed as

- 0 0

B¢=V-< Tq’b) _ % (2.45)
oV e

Given appropriate forms for ¢ (such as quadratic dependence of 7 on Vi, (2.45) is recognized

as an advection, reaction—diffusion equation, which given an assumed form for 1, can generate a

Ginzburg-Landau equation. The coefficient B~! is then recognized as a kinetic rate constant for

the phase transformation.

2.3.1 Temperature form of the energy equation

In order to show the coupling between the thermal (temperature) field, the stress field, and the
phase field, we present an alternative form of the energy equation. Starting with the energy
balance (2.36) we use the definition of the specific internal energy in terms of the temperature and
the entropy, e = 9 +1'n, to obtain é = 1,b + nT +T'7. Next we use the form of the Helmholtz energy

P(p, T, 6@, F) and the Gibbs relation n = —0v/JT to generate expressions for 1,b and 7:

o o, oy =

R, . )
=_—_FT: — T+ — - - 2.4
) oF Vv+8T —i—a(p(p—i—av(p Vo, (2.46)
82’1[) . 82’1[) . 82’1[) 82’1[) —_
) = — F': — T — h— —— - . 2.4
1= =grort VO grl T arag? ITOV Ve (247)

We then insert these expression into (2.36) and make some further simplifications. In the resulting
collection, terms proportional to T drop out because of the Gibbs relation = —0vy/JT. Likewise
terms proportional to 6(,0 drop out because of the relation for the configurational stress £ =

p(0y/ 86@). A collection of terms appears that is associated with the stress-related dissipation

a el =3 1 —
<a - pa—ﬁ,FT + V<p®£> Vo = o155 Ty

and a collection of terms appears associated with the dissipation induced by the phase transforma-
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tion

M : .
- <p%+7r¢) ¢ = B¢?.

Using the classical definition of the specific heat at constant deformation (volume) ¢, = T'(9n/0T)F =

~T(0%)/0T?)F, we can re-write the energy equation as

h . diss . & -2 >y T .o
pc,T'=-V-q+o :Vu+ By +pT8T8FF :Vou +
aQw 821/1 —_
T 0+ pT——=— Vo +pr. (248
T oTas?*r To% @ +pr. (248)

Some straightforward physical interpretations can be made for the various terms. The term
odiss . Ty is the viscous dissipation associated with the stress. The term B¢? is a dissipation
associated with the phase change. The term pT (0% /0T0p) ¢ is an energy source term that is
associated with enthalpic changes in phase (similar to those associated with the heat of combustion
for reacting flows). The term pT(0%)/OTOF)F" : Vv is (again) a stress work term classically
associated with thermal stresses. Similarly, the term pT'(8%¢)/dTIV dp) -é(p is a thermal stress

work term associated with the configurational stress of the phase change.

Invariance requirements and isotropy

Most energetic solids are encountered as fine-grained polycrystalline aggregates and are often
modeled with conventional isotropic liquid and gaseous forms. We now restrict our attention to
isotropic materials and we ignore possible anisotropic properties in this model. As is conventional
we require that the material response be invariant under superposed rigid changes of observer.
It can be shown in a standard way that the constitutive dependence on the deformation gradi-
ent F' can be replaced by the left Cauchy—Green tensor B = FF' and that the dependence on
the velocity gradient is replaced by the symmetric stretching tensor D = (L + L')/2. Further-
more, isotropy requires that the dependence on B appears through its principal scalar invariants

I = traceB, II; = 3((trace B)? — trace(B?)) and Il = detB.
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Constitutive specification of the Helmholtz free energy

Having made arguments that constrain the general form of the constitutive description, we next
specialize the forms to extend the phase field constitutive forms and to capture commonly used
classical forms for the pure solid, liquid, and gas phases. Without regard to exothermic chemical
reaction, we will assume that the Helmholtz free energy is composed of four parts, such that we

can write

W =p1 +1pa + 1P3 + Py (2.49)

The first two, 91 and 19, are to be associated with the formulation of the phase transformations—
the phase gradient energy density and the enthalpies associated with the phase transition. The
latter, 13 and 14 are of classical origins—the thermal energy deunsity and the strain energy density.

We assume that the Helmholtz free energy depends on 6@ only through 1); and that the phase

gradient energy density is specified with the explicit quadratic dependence

1= Ly, Vel (2.50)

It follows from (2.41) that the configurational force & is determined by the formula

o -
E=p—=—=p7Ve. (2.51)
OV v
The physical interpretation of the phase-configurational stress &£ is as a traction that acts near or
in the phase transition region in the direction of the gradient of 6(,0, i.e. perpendicular to contours
of constant ¢.

Next we consider the contribution 12, the phase transition energy density that reflects enthalpy

changes during phase transition, specified as

¥o = S0NF () 1+ (@)@ (7 — 1) + Al (7 —1). (2.52)

m v

The constants TWell > 0, Qn <0, and @, < 0 represent a potential well depth and the heats of
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melting and vaporization. The constants T, > 0 and 7, > 0 represent temperatures of melting
and vaporization. The triple-well potential F(¢) can be described by a smooth positive definite
function whose isolated zeroes are at ¢ = 0,1, and 2, representing three local minima. In addition,
F(¢p) is assumed to be locally quadratic near the zeroes at ¢ = 0,1, and 2, i.e. near ¢ = 0, F ~ ¢?,
near ¢ = 1, F ~ (¢ —1)%, and near p = 2, F ~ (p —2)2. As an illustration, F = [p(¢ —1)(¢ — 2)]?
has this property. The function §,,(p) is assumed to be smooth and monotonically increasing and
has values from 0 to 1 on the range 0 < ¢ < 1 with zero derivative elsewhere. The function f,(¢p) is
similarly assumed to be monotonically increasing with values from 0 to 1 on the range 1 < ¢ < 2.
Note that the derivative of transition-energy density 0ia/J¢ generates source terms in both the

energy and phase equations represented as

Iy 1 well OF , r / T
B =305, )+ Bul@)Qm (-~ 1) + Bie) (7~ 1) (2:53)

Figure 2.1 illustrates the assumed dependence of 1 (¢,T) on ¢ and 7. Starting from (a)
through (d), temperature 7' is raised from below T}, to above T, representing a standard melting—
evaporation process. The transition energy density in case (a) has its minimum at ¢ = 0. As T is
increased through 7,, and then 7,, we see a shift in the global minima from pure solid to solid-
liquid and to liquid—vapor. As T eventually exceeds T, as shown in (d), the energy minimizing well
shifts to a vapor state at ¢ = 2. The coefficients and functions \I,well’ Bm, Bu can be adjusted (if
needed) to reflect more accurately the physical properties observed in accordance with the phase
transformation. Here we have chosen very simple forms.

We again assume the classical form for the thermal energy density and choose 13 (which has

the same form as 7)1 in Section 2) to be
Y = ¢ [(T = Ty) — TIn(T/Ty)] (2.54)

where ¢, is the specific heat at constant deformation. This assumption is consistent with simple
ideal models for solids, liquids and gases.

Finally we choose a form for 14, the strain energy density. We assume that it is composed
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Figure 2.1: Plot of 99 as a function of ¢ with 71" variation.
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of three sub-parts. The first part is associated with the thermal expansion stresses commonly

identified in the condensed phase

ac(p) K
2p0

Paa = — (T = To) In(Ill 5) , (2.55)

where K is the solid bulk modulus and «, is the linear coefficient of thermal expansion. We again
take a.(p) to be a smooth, non-zero function in the condensed phases, solid and liquid, and zero
in the gas phase. For example, a.(0) = agy);q, @e(l) = Uiquids and a,(2) = 0. The second part of
14 is associated with the pressure commonly identified in an ideal gas that we encountered in the

previous section on gaseous combustion:
1
o = =5 Ry(¢) T In( M) (2:56)

Here Ry(¢) plays the role of the ideal gas constant except that it is assumed to be non-zero in the
gas phase and at or near zero in the solid and liquid condensed phases such that R,(0) = 0, R4(1) =
0, Ry(2) = Rgas-

The third part, 94., is based on properties of a compressible neo-Hookean, Blatz—Ko solid [25],

which is given as

W w(l —2v —v/(1—2v
i = el = 3) + H2 (1,10 ) (257)

The constants v and p here represent the Poisson’s ratio of the material and the elastic Lamé

parameter y. The contribution to the stress associated with this potential is

o /(1w
oBK = 2¢ 8%KB = uwlB-pLlm/ g, (2.58)

Po Po

We use this to model the elastic deformation of the solid, but for the liquid we pose a slightly
altered form of this potential based on purely isotropic deformations. Consider the isotropic (either
uniform contraction or expansion) mapping given by & = sX, where s is the stretch ratio of
material line segments. It follows simply that F = sI, B = s%I, lll = det(B) = (py/p)? = s°,

s=(po/p)'/3, B = (po/p)'/I, and (po/p)'/* = 117}.-/6. For the Blatz—Ko solid, the isotropic stress
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is related to the volume ratio by

= | ()-8

We choose our model for the strain energy of the liquid to have the same functional form for the

isotropic stress dependence on the density ratio as that for the solid, and merely note that we can
replace the dependence on py/p by lZI}E,./ ? and work backwards. The corresponding Helmholtz free

energy for the liquid would take the form

B B

34 gpys  md = 2v) (w0 —1) (2.60)
2 po 2pov

YBK (liquid) =

We can combine the two potentials for the solid and the liquid in the following way. Let ps(¢p)

be a coefficient such that ps(0) = pgy);q and is zero for ¢ > 1. Let p(¢) be a smooth function
such that p;(1) = Miquid With 11(0) = py(2) = 0. One makes similar definitions for vs and v;. Let
te be defined as the sum p. = p; + ps, and v, = v; + vs. Then the combined solid, liquid elastic

potential can be written as

s 3 c ]- - 2 c —Vc —2V¢
e = 2 (13_3)+—ﬂﬂ1;/3+u(m3 /-2 )—1) . (2.61)
P 2pove

Note that other functional forms for the strain energy density could have been chosen for 1y,
but we chose the Blatz—Ko form since it has a simple reduction to compressible linear elasticity
in the limit of small strain, which is deemed convenient for our purposes. We anticipate that as
the solid become significantly nonlinearly elastic, a phase transformation will occur, so that the
specific choice of the Blatz—Ko form is not a sensitive one for the properties of the model. The
deformational portion of stress associated with this strain energy is

) (e
glef =g, Wicg P P/ 0=wp P oS (2.62)
aB po po pO

30



2.3.2 Total free-energy density and summary of constitutive forms

The form of 9 = 11 + 12 + 93 + Pag + Pap + P4 is written as

1-2 —vs/(1=2v 3
= fs () Iy — 3) + pe(p) (1 — 2v5) (JHB o/ (1=2v5) _ 1) L 3mle) mrl/?
2p0 2povs 2p,
ac((P)K 1 . .
- T(T —To)In(llg) — §Rg(<p)T In(lg) Strain energy density
Po
— () [T In(T/Ty) — (T — To)] Thermal energy density

1 T T
+ §\Ifwell.7:(<p) + B () <T_ — 1) Qm + Bu(p) <? — 1) @, Phase transition energy density
m v

+ %’Y¢|690|2 . Gradient energy density

(2.63)

The constitutive theory is essentially complete. The stress is given by the general expression

9P

_ YV O diss
a—paBB V€ +o (2.64)

with £ given by € = p'y(pﬁw and odiss given by odiss — uf(ﬁ -v)I +2pu;D. The stress formula

becomes
o = LB p Lm0y Lt
Po Po o
—ac(sO)Kp%(T — To)I — pRy(p)TT
—pwﬁp@ﬁp-i—uf(ﬁ ~v)I +2uyD . (2.65)
The energy flux vector remains g = —kVT. The various source terms in the energy equation and

the phase equation can be computed from the forms given in (2.63).
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We can now summarize the governing equations for the phase change model as

5+ pYw=o0, (2.66)
pv = V-o+pf, (2.67)
pe, T = V- (kVT) + o5 Vo 4+ Bp? + pT oy FT:Vov+
v ' OTOF~
%1 A
T b+ o1 —— . Vy+ T, 2.68
T oy P oToTy +p (2.68)
. - = N
By = V- (p1Ve) —ry s (2.69)
@
F = LF (2.70)

where B, ¢,, v, k, etc. are constitutive scalars that could be regarded as functions of both ¢ and T'.
We have added the kinematic identity (2.70) in order to compute the evolution of the displacement

gradients.

2.4 The combined model: Modifications to include chemical

reaction

Here we list the modifications required to combine both models into one. First we take the phase
change model as the starting point and we retain all the assumptions and assumed forms of the
previous section, specifically in regards to the appearance of ¢. The configurational force balance
(2.31) is retained as a fundamental balance law (the consequence of which leads to the derivation
of the evolution equation for ¢, equation (2.69)).

Next we assume that in addition to ¢, which measures the molecular order of the phase, the
mass fraction A simultaneously measures the amount of exothermic chemical reaction that has
taken place. So A is added to all the argument lists; in particular in the expression for 1) we assume

the dependence
¥ =9(F.T.0.\ Vg L). (2.71)
A statement of conservation of X is added in the form of (2.7), which reflects a molecularly based
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conservation of species. The second law must be modified to include the entropy flux associated

with the heat of combustion (so it takes the same form as (2.8)):

pi > V- (%)+ﬁ- <ths) + 2 (2.72)

One argues the entropy inequality in exactly the same manner as in the previous section, with
the same assumptions and conclusions of Section 3, with the additional exception that one uses
the evolution equation for A, (2.7), to reduce the dissipation inequality in the manner explained in
Section 2. The energy flux vector is identified by the requirement of positivity of the left-hand side
of (2.18), which leads to

q=—kVT + Q5. (2.73)
The vector s can be chosen according to Fick’s law such that
s=dV\. (2.74)

The Helmholtz free energy is designated as 9 = 1)1 +1o + 13+ 144 +1ap +1V4c + 15, where 114, are
defined in the previous section and 15 is the chemical enthalpy 15 = —Q},.A. The configurational

stress is again of the form £ = pfy(pﬁgo. The representation of the stress is

o = pB - p L,y Lt
Po Po Po
—ac«o)Kg(T —Ty)I — pRy(¢)T1

—pwﬁp@ﬁp-l—uf(ﬁ-v)I-i-ZufD. (2.75)

The various scalar material properties identified previously, such as ¢, and <y, now can also have

explicit dependence on A as well as ¢ and T
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A revised list of the governing equations for combined model with reaction and phase change is

p + pV-v=0, (2.76)
pt = Veotof, (2.77)
pe,T = V-(kVT) + odiss . Ty 4 B¢? 4+ pT 0% F: Vo
' ' OTOF~
0%y op =
i o+ pT o Vot plpe St pr 2.78
Moroe? M arge, 0P @hefte (2.78)
. - - b
Be = VAo Ve) —rp, (2.79)
¥
P}\ = V- (dﬁ)\) +pQ, (2.80)
F = LF. (2.81)

With the specific counstitutive forms chosen for 1) the energy equation becomes

pe, T =V - (kVT) + I/f(ﬁ v)?+2u;D : D+ By — ac(go)KﬁT(ﬁ V) — pRg(go)T(ﬁ - v)

po
o) . p Ry () ,
+ {292 K L) — p = T ) = )T (1)

0 |17+ BT b+ s+ r (282

and the evolution law for ¢ becomes

By=V-

N

1Y) + pcy(9) [T (T Ty) = (T — Ty)]

! / _ /
AN Iy — 3) — pe(p) p (1= 2v) (m;us/(l—zus) _ 1) n 3Hl(90)£mé/3

2 pg 2 po Vg
/
1
MKpﬁ(:r ~ To) In(llLs) + 5pRy ()T Wn( 1L )
0

2 po

T

oy 10 (- 1) @t ) (7 1) @] - (289

2.4.1 Material transition functions

An important ingredient of our model is the use of ¢-dependent material properties, or material
transition functions. Earlier in Section 2.4.2, we encountered [Sp,(¢), By(¢) in the specification

of the phase transition energy density, pc(¢), (), s (@), ac(@), Ry(¢) in the specification of the
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strain energy density, ¢,(¢) in the specification of the thermal energy density as well as functions
associated with dissipative processes like v¢(¢). The model assumes that these functions have
limiting pure-phase values when ¢ = 0,1,2. The structure of these functions has an influence on
the exact details of the spatial structure of the transition layers and their dynamics when particular
problems are solved. However one makes an implicit assumption that when the transitions occur
in thin layers relative to other geometric lengths the structure within the layer does not strongly
influence the information transmitted across the layer. This modeling precept is consistent with
the use of viscous dissipation to describe continuum shock structure when the shock is molecularly
thin.

For illustration sake, Figure 2.2 and 2.3 show typical transition functions that we have used to
carry out representative simulations discussed in [81]. These functions are constructed from simple
polynomials in ¢ and their smooth extensions. The figures clearly show the basic properties that
are required. For example, in Fig. 2.2c, the representation of the thermal expansion parameter
a¢(p) which has the same (constant) value in the solid and liquid phase is zero in the gas phase.
Another example is that f],(¢) is zero for all values of ¢ except those between 0 and 1, and terms
that multiply f/,(¢) are only involved in solid to liquid transition of melting or freezing, and are

totally absent in the liquid gas transition of evaporation and condensation.

2.5 Some limiting cases

2.5.1 Pure phases

The results for pure phase can be identified by the constitutive forms for the stress tensor. First
we will consider the solid, ¢ = 0 in the additional limit of small strain. The small strain limit is
represented in terms of the displacement gradient H = F — I, where |H| << 1. Define the small
strain tensor E = (H + H")/2 and the left Cauchy-Green tensor can be written as B = FF' =

I+2E+ HH'. Our limiting form for the stress relation reduces to

p 2l 1id Venli
o = —agoliq 5 K(1' = To)I + %ﬁﬁ’gd IeT+2pgq B, (2.84)
SOl1
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Figure 2.2: Plots of transfer functions for HMX simulation and their derivatives with respect
to phase variable. Shear modulus, ideal gas constant, thermal expansion coefficient, and phase
diffusion coefficient are shown from top to bottom.
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Figure 2.3: ¢-dependent transfer functions (derivatives) for heat of phase transformation, /3, and
B,. Third figure depicts the triple-well Ginzburg-Landau potential function and its derivative.
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When one considers the limit of a liquid, ¢ = 1, the expression for the stress becomes
2vy: - 1/(1-2vy; - q) 1/3
P p p liquid liquid < P >
0 =—Q:qd K— T —T0) I — ;00134 — — — = I
liquid po ( o) Hliquid Po ((PO) Po

+ Vliquid(v -v)I + 2“liquidD , (2.85)
similarly for the limit of the gas, ¢ = 2 one obtains the expression for the stress becomes
g = —pRgasTI + I/gas(ﬁ . ’U)I + 2/J,gasD . (286)

2.5.2 Motionless phase transition

In this case we simply assume that the system is nearly motionless with v =~ 0 and consider
the pure phase-change from solid to liquid with no chemical reaction. In addition, we neglect
thermal expansion configurational forces, consistent with a nearly zero velocity field and the thermal
dissipation associated with the phase transition. Further we assume that ¢ is in the range 0 < ¢ <'1
and F(p) is effectively a double-well potential. We take the specific heat to be constant and are

left with a thermal-diffusional model for the temperature and phase-field given by the equations

. - T )
pc, T =V - (kEVT) + pﬁ{n(sO)Tmew, (2.87)
and
L _ o =y LgwelldE r
By =V - (p7,Vp) p5 Y 9 PBm () T 1) Qm. (2.88)

These equations are a generalized form of a thermally-dependent Ginzburg—Landau theory of
phase transitions often cited in discussions of solidification of binary alloys (see Wright et al, for
example [73].) Simple systems of this form, with a double-well potential and a single latent heat
term, have been analyzed in the literature have been shown to correspond to various forms of the
classical (sharp interface) description of phase transitions. Further analysis leads to modified Stefan

problems that incorporate surface tension and kinetic undercooling, [15].
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2.5.3 Relation to the simpler theory of quasi-static phase transformation

Here we briefly discuss the manner in which our model relates to the theory of quasi-static phase
transformations that is part of classical equilibrium thermodynamics. We assume that the changes
in the state in the material happen so slowly that all inertial effects can be neglected and that
the material only undergoes isotropic volume changes that are measured by changes in the density.
The stress is spherical so that o = —pI. The deformation is homogeneous such that x = sX,
with F = sI, det(F) = s = (po/p), B = (po/p)*I, and strain invariants Iz = (po/p)? and
Iz — 3 =3[(po/p)? — 1]. One neglects all spatial gradients.

Next we consider the volume changes that occur as the temperature rises when the material is
subjected to constant volumetric heating (given by constant ), under isobaric (constant pressure)
conditions. For simplicity, we will also assume that the specific heat is constant in all phases. Then
the change in the thermodynamic states would be controlled by a simplified version of the energy

equation (for the temperature) and the phase evolution equation. These are written as

or T T 0
s S = 0 (B0 + B E0u) 5+ pr, (2.89)

T-1T,
T,

0 1 oOF T T,
B _ _ Lywend” [ﬁ:n(so) Om + A1)

2 ——pyr i - Qv], (2.90)

and for the purpose of illustration, (2.75) is simplified by linearizing p about py in the solid and

liquid phases to obtain the thermal equation of state, a relation between p, p,T" and ¢

6/LC((70)I/5 P P
=P (L 1)+ ac K5 (T = T}) — pR,T. 2.91
=10 \ng c 0( 0) g (2.91)

The above equations are solved subject to the initial condition that the material is initially solid
and at the reference temperature, ¢(0) = 0 and T'(0) = Tj. For constant pressure, a specified tem-
perature and ¢, equation (2.91) determines the specific volume, V' = 1/p. The solution of the initial
value problem for 1" and ¢ determines a trajectory in 7', V, p-space at fixed p. A typical solution
shows that as the temperature rises in the solid, the volume increases along the isobar. A phase

transition (change in ¢) does not take place till the temperature nears the melting temperature, 7)), .
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Figure 2.4: T-v trajectory on an isobar (p = 107 Pa) under the quasi-static assumptions. The large
volume jump from liquid to gas happens at nearly constant temperature 7T.,.

Above that temperature local analysis shows that a change in stability of the state ¢ = 0 occurs
and then the transition from ¢ = 0 to ¢ = 1 occurs. Since the volumetric change is small (4 % or
less) the deviation in a 7', v isobar is not large in some sense. As the temperature continues to rise
then the second phase transition occurs near the vaporization temperature 7,. Since the thermal
equation of state is effectively modeled by the ideal gas law, a rather large change in the specific
volume occurs. Finally after the phase transition to vapor is completed and ¢ = 2 is reached, the
temperature continues to climb on the gas-phase isobar with increasing volume. Figure 5.1 show
plots of a T', V-trajectory for a isobaric phase transition for the HMX-like material described in
Chapter 3. Figure 5.2 shows the corresponding ¢, V - trajectory at different pressures. Again the
purpose here is simply to illustrate that conventional notions of quasi-static phase transformations

described in classical thermodynamics are embedded in this model.

2.6 Special forms of the model for three simple motions

In this concluding section we write out special and exact forms of the differential equations for

the model when the material undergoes three simple motions, i) evolution at constant volume,
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Figure 2.5: Phase-V trajectory of constant pressure under the thermo-quasistatic assumption.

ii) one-dimensional, time-dependent, longitudinal motion and iii) one-dimensional, time-dependent
shear motion. All three are very important in the analysis of ignition of energetic materials. The
three cases are the exclusive subject of Chapter 3, where numerical simulation and the properties

of the model are discussed further.

2.6.1 Constant volume evolution and thermal explosion

A simple but extremely important sub-case that is studied extensively in combustion theory de-
scribes the constant volume thermal explosion, where the velocity v and all spatial gradients are
exactly zero. The density is constant hence the volume of a material particle is constant. For
illustration, we neglect thermal expansion, and assume constant specific heat and gas constant. We
are left with three ordinary differential equations in time for the temperature, phase-change and

reaction progress,

oT dp

T , T
pes S = 0 (801 + LU0 5+ b+ o, (2:92)

41



Oy 1 110F T -1, T-1T,
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5~ P3 95 " B () T Qm + By (¢) T Qv (2.93)
O\
92 _q. 2.94
9 (2.94)

If one discards phase change we recover the equations from standard combustion theory for constant
volume thermal explosion, ¢,(0T/0t) = Q. 2, (0A/0t) = Q . Of course, the more interesting
behavior occurs when phase change is included. The typical dynamics of these ordinary differential

equations are discussed at length in Chapter 3.

2.6.2 Longitudinal motion

Next we turn to specializations of the equations to simplified motions that lead to PDEs in one
space dimension and one time dimension, particularly suited to the study of ignition phenomena
in energetic materials (which is one of our main concerns). First we consider longitudinal compres-
sion associated with a flyer-plate impact test. In this idealization, an infinite slab experiences a
displacement loading normal to its surface. Specifically we counsider the following one-dimensional

motion
1 = X1+ fi(X1,t), zo=Xy, z3=X3, (2.95)

where f; is the 1 displacement.

For this motion, there is one nonzero velocity component, v; = Jf1/0t|x(X1,t), and F is
diagonal with Fy; = dz1/0X; = 1+ f|, and Fy = F33 = 1. The density is related to the single
strain gradient by 1 + f] = pg/p. Also B is diagonal with By; = (1 + f])?, Bas = 1, B33 = 1. The
first and third invariants of B are Ig = 2+ (1 + f{)? and I11g = (1 + f])?, with Il = (po/p)?
and Iy — 3 = (po/p)? — 1. Hence we use the density as the independent strain measure and replace
f1. The one nonzero component of the velocity gradient and rate of strain tensor are respectively,

Lyy = Dyy = 0v1/0z1. Also (6(,0@690)11 = (0p/dz1)?. Tt then follows that all the shear stresses
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are zero, 019 = o093 = 013 = 0, and the normal stresses 011 is given by
2vg

1—2vg —2
v (22 (2) et
Po Po Po Po
8’01

a 2
— pR,T — pryy <8—g;p1) + (vp + 2'uf)8—:z:1 . (2.96)

The other normal stress are the same as the oq; stress, minus the phase stress, i.e. 099 = 033 =

a11 + pyp (D¢ /01).
The specific governing equations for longitudinal compression are the mass and momentum

equations

—+uv——+p—=0, (2.97)

(%H%)_i ) (&) (g)f?%_(ﬁ)?
p 8t 18(1)1 8.T1 fe Po £0o £0o

v\’ v
_aCKﬁ(T —To) — pRyT — pry, <8—;i> + (vp + 2uf)8 ! } (2.98)

o Z1

and the energy balance, phase evolution, and reaction progress evolution equations, which take the

specific forms

or ~ ar\ 9 [, 0T i \° . ., p dvy

n {_%a’c(gp)KpﬁOTln(lﬂB) - %pR’g(so)Tln(ﬂIB) — pc, ()T In(T/Tp)

4|87+ B Q| b4 p @+ r (299

v
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2.6.3 Shear motion

Now we turn to specialization of the equations to shear motion, which again leads to PDEs in one
space dimension, transverse to the motion and one time dimension. A nominal geometry is a slab
of fixed thickness loaded one surface with constant velocity, while the other is fixed. The bottom
surface is taken to be fixed (zero displacement) for the entire duration of the test. Specifically we

counsider the following one-dimensional motion

T =X1+f1(X2,t), .T2=X2+f2(X2,t), €T3 =X3, (2102)

where fi and fs are the in-plane displacements, which can also be regarded as functions of the spatial
coordinate and time z9,t. Corresponding to this motion one has the velocities with dependencies
v1(z2,t),v2(x9,t), and vg = 0, and 0/0zy = 0/0x3 = 0. The expression of the material time

derivative is given by () = 9/0t + v9 9/0x2.

The shear deformation is described by
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ij

The invariants of B are computed as Iy = 1+ f12+ (14 f3)2+1 and I1I = (14 f4)2 = (po/p)? with
1+ f5 = po/p. Also Iy —3 = (po/p)? — 1+ f1*. In addition from the kinematic identity, F = LF we
obtain two nontrivial relations f! = (14 f3)v;/0zy and f}, = (14 f3)3vy/dzy, where the material
derivative is () = 0/0t + v20/0z9. The second of the two results is just a re-statement of the
mass conservation, and is equivalent to replacing 1 + f} with po/p. But the first is an independent
expression for the shear strain which can be recast in terms of the density and transverse velocity
gradient as

7 po\ Ovi

== —. 2.105

() < P ) Oy ( )
Finally, the contribution to the configurational stress has only one nonzero component, (6(,0@
Vi) = (0p/0xs)?.

Using the density, p and the shear strain f] as the two independent kinematic variables, we can

now write down expressions for the components of the stress tensor. The cross plane shear stresses

are zero, i.e., 013 = 023 = 0. The in-plane shear stress o129 is given by the expression

8’[)1

—. 2.1
o, (2.106)

o12 = ps f1 + 1y
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The in-plane normal stress g9 is given by

2vg

1—2vg —2
o (2)[(8) - () eger -
Po o o o

0 Ova

2
4

The specific governing equations for the shear motion for the full model are

— 4 uv—+p—=0, (2.108)

0 ) ) 0
p <—vl +v2—8vl) = — [usf{ +hy vl] : (2.109)
9
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and for chemical reaction,
1)) 1)) 0 1))
—— — )| ==—|d=— Q. 2.113
p<8t+v28$2> 85112 < 8$2>+p ( )
Finally the kinematic relation (2.105) for the shear strain (which must be included) is expressed as
p (Ol O\ ow
— | = — | =—. 2.114
0 < 9t 205, ) = o (2.114)
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Chapter 3

Analysis of Simple Motions

This chapter describes a continuum model for the behavior of a condensed phase energetic material
that undergoes phase transformation. Such materials are often used in explosive and pyrotechnic
systems and are commonly known as solid explosives. Explosive materials are usually stable solids
at room temperature and pressure, and when subjected to sufficiently strong mechanical or thermal
stimulus they undergo transitions to liquid and gas before releasing the bulk of their stored energy
by chemical reaction mainly in the gas phase. Chapter 2 presented the continuum formulation that
describes phase transitions from solid to liquid to gas. The model also includes energy-release due to
chemical reaction. The state of the phase and the progress of the chemical reaction are represented
by two thermodynamically independent variables, ¢ and A\. The phase variable ¢ takes on the
values 0 for a pure solid, 1 for a pure liquid and 2 for a pure gas. The progress of the (exothermic)
chemical reaction is represented by A which ranges from 0 (unreacted) to 1 (completely reacted).

Most of Chapter 2 explains the model’s formulation, assumptions and the restricted form of
the constitutive theory based on standard arguments from the second law of thermodynamics.
Following Gurtin’s suggestion [32], configurational forces are assumed to be in global and local
balance and further arguments lead to the derivation of an evolution law for ¢, which is of the
advection, diffusion, reaction type. Following combustion theory for a reactive mixture, an evolution
law for the reaction progress variable A is posited as a fundamental law.

Hence, our model is fully three-dimensional and is thermodynamically and tensorially consis-
tent. Specialization of the model and limiting forms are examined in Chapter 2 and the equations
for the special cases of constant volume evolution, one-dimensional, time-dependent longitudinal

compression motion and time-dependent shear motion are obtained. Solutions to initial boundary-
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value problems for the equations for these simple motions illustrate the behavior of the model and
reveal its properties. The results testify to the model’s potential suitability for modeling com-
plex phenomena that involve both phase transformation and chemical reaction in one combined
framework. Material constants and properties of the energetic material (solid explosive) HMX are
used to determine representative values for the model. These include properties such as (but not
limited to) the elastic properties, viscosities, specific heats, gas constant, heats of melting (fusion),
vaporization (condensation), and combustion (detonation).

In Section 1 the equations for the three dimensional model is given. In Section 2 we discuss
how we assigned the material properties of HMX to the model. In Section 3 the special forms of
the equations for the three simple motions are given. We also solve the case for constant volume
evolution and discuss the properties of the underlying ordinary differential equations and their
dynamics. In Section 4 the numerical methodology is given for longitudinal and shear motions.
Section 5 presents representative numerical solutions for mechanically induced phase transformation
and includes examples of interesting properties of the model such as shear localization and shock

melting.

3.1 Mathematical formulations

3.1.1 Kinematics and some definitions

The coordinates of position in the lab-frame are given by & and the initial position of the material
particles are given by X. The mapping of the deformations is given by @ = &(X,t). The deforma-
tion gradient F' is defined by the derivative F = 0x/0X. The left Cauchy-Green tensor B = FF'
is used to describe finite deformations. The velocity is defined by the time derivative of the particle
trajectories v = (Ox/0t) x. The velocity gradient is the gradient of the velocity field defined by the
tensor L = Vv. Let the dot notation, 6, refer to the material derivative. The rate of stretching
tensor appears is given by D = [V + (Vv)']/2. The time derivative of the deformation gradient is
F = LF. Consideration of conservation of mass relates the instantaneous density p to a reference

(ambient) density of the solid, pg by det(F) = pg/p as well as det(B) = (po/p)?.
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3.1.2 General formulation

The derivation of the model and its constitutive specification was the principal subject of Ref. [62]
or Chapter 2. The arguments in that paper, developed a ¢-dependent constitutive expression for

the stress o as

o = ptoB e I I
0

Po Po
— K2 (T — T))T — pR,TT
Po
—p, Ve @ Vo +vp(V-v) +2u:D. (3.1)

The material properties jic, ps, p, e, Ry, Yo, vy and py are assumed to be functions of ¢ such
that they are non-zero in the appropriate phase and are zero otherwise. The shear modulus g is
associated with a Blatz-Ko compressible solid and p; is associated with liquid. The function u,
represents the shear modulus of the condensed phase such that pu. = ps + p, with the properties
that 11c(0) = 115(0) = psotia, 1i(0) = 0, ps(1) = 0, pe(1) = w(l) = piguia and pe(2) = ps(2) =
p1(2) = 0. The function «, is associated with a thermal expansion stress, R, is associated with
the ideal gas constant in a gas, vy and py are associated with strain rate generated viscous stress,
and 7, is associated with phase change induced stresses that act in regions with nonzero phase
gradients. Derivatives of the p-dependent functions that appear represented are by derivatives
like o/ (¢, T) = 0a/dp|r. The s-subscript refers to the solid phase, I-subscript refers to the liquid
phase, and c-subscript refers to the condensed phase. Similarly the f-subscript refers to the fluid
properties for both liquid and gas phases. If spelled out the subscript, ‘solid’, ‘liquid’, or ‘gas’,
refers to a constant material property. The various scalar material properties, such as ¢,,~, could

have explicit dependence on A as well as ¢ and T. The governing equations for the model with
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reaction and phase change (without body forces) are

pc, T =

Table 3.1 gives
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acKﬂT(ﬁ V) — pRgT(ﬁ - v)

Po
{240 ke Lpuatay) - p ™2 (i) - pe (01T (/)
0
o [ﬁ:n(so)%czm +ﬂ{,(<ﬁ)%Qv] }¢+pczhcﬂ+pr, (3.4)

V- (10V6) + pey () [T (T Ty) = (T = Ty)]

: 1-2 c —V, —2v, 3 /
ps(p) p Ly —3) — pe(p) p (1 —2vc) (HIB o/ (1-200) 1) N () LB
2 po 2 po Ve

2 po

eel) K22~ 1) (lla) + R, ()T In(1T)

o30S = |8 (7 1) Qn+ o) (1) @] (3.5
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the values for material properties that appear in equations (3.1-3.7). The values

are based upon HMX along with references to the data source or a notation that we have used a

model value.

3.1.3 DMaterial transition functions

An important ingredient of our model is the use of p-dependent material properties, or material

transition functions. Their most prominent use is in the definition of the source terms in the -

evolution equation and the energy (temperature) equation. Also, functions such as p.(p), ps(p),

pi(e), ac(p), Ry(g), cv(p) all change with the phase variable ¢. The model assumes that these

are defined in such a way so that they take on proper values for pure phases when the material

has the limiting pure-phase values for ¢. The p-dependent material transition functions used for

this paper are listed in the Appendix A and are made up of simple, smooth or piece-wise smooth,
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Material Property

Value

Refs.

Density of S-HMX (po)

Deunsity of liquid-HMX

Specific heat at constant volume (c,)
Isothermal Bulk modulus (K = p g—ﬁ T)

Shear modulus (pseiq)
Shear modulus (piguid)

Poisson’s ratio (v.)

Viscosity coefficient (pf)

Bulk viscosity coeflicient ()
Thermal expansion coefficient (asozq)
Thermal conductivity (k)

Phase diffusion coefficient (py,,)
Universal gas constant (R,,)

Molar weight of S-HMX

Gas constant per unit mass (Ryqs)

Melting temperature (71),)
Vaporization temperature (7)
Heat of melting (Q,)

Heat of vaporization (Q,)
Heat of combustion (Qp.)
Rate of heat source (pr)

Frequency of Arrhenius kinetic (A)
Activation temperature (E,/R,,)

Depth of phase well (TWell)
Multiplication factor of ¢ (B)

1.71 g/cm?
1.65 g/cm?
1.5 x 10* J/kg K
13.5 GPa

2.46 GPa

2.37 GPa

0.414

0.45 N s/m?
-2/3 py

0.000134 1/K [47]
36 W/m K
1.0 x 107% m kg/s?
8313 J/kmole K
296.2 kg/kmole
300 J/kg K

558 K
588 K

—200 x 10® J/kg
—100 x 10 J/kg
5.0 x 106 J/kg
5000 J/m>s

9.3 x 100 1/s
24660 K

550 J/kg
1.5 kg/m s

[47]

[4]

[47]

[47]

modeled

modeled
calculated

[24]

Stokes hypothesis

[47]
modeled

[24]
modeled

[24]
modeled
[24]
modeled
[69]
modeled

[69]
[69]

modeled
modeled

Table 3.1: Material properties typical of HMX.
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polynomials in ¢.
Figure 2.3 shows the material transition functions /], (¢), £, (¢) that are used to construct o,

which represents free energy changes during phase transition and is given by

1 T T
v = SN () + Bu(@)Qm (7 — 1) + B(@)Qu (7 — 1), (3.8)
2 T T,
where UWell > 0 is a constant that describes the potential, and @), < 0 and @, < 0 are constants

representing the heats of melting and vaporization. The constants 1}, > 0 and T}, > 0 are melting
and vaporization temperatures. Here we assume a specific form for F'(¢) (listed in the Appendix A)
that is a smooth positive definite function with isolated zeroes at ¢ = 0,1, and 2, representing three
local minima. In addition, F'(p) is assumed to be locally quadratic near the zeroes at ¢ = 0,1 and
2, i.e. near ¢ = 0, F ~ ¢? near p = 1,F ~ (¢ — 1), and near ¢ = 2, F' ~ (¢ — 2)2. The function
Bm () is assumed to be smooth and monotonically increasing and has values from 0 to 1 on the
range 0 < ¢ < 1 with zero derivative elsewhere. Similarly the function (,(y) is similarly assumed
to be monotonically increasing with values from 0 to 1 on the range 1 < ¢ < 2. The derivative of

transition-energy density 012/0p generates source terms in the phase equation represented as

O 1 noF , T , T
9 =305, @) T Bu)Qm (-~ 1) + A0 (7 - 1), (3.9)

Figure 2.1 illustrates the assumed dependence of 19(¢,T) on ¢ and 7. Starting from (a)
through (d), the temperature 7', is raised from below T, to above T, representing a standard
melting-evaporation process. The transition energy density in case (a) has its minimum at ¢ = 0.
As T is increased through T}, and then T}, we see a shift in the global minima from pure solid to
solid-liquid and to liquid-vapor. As T eventually exceeds T, as shown in (d), the energy minimizing
well shifts to a vapor state at ¢ = 2. Figure 2.2 shows examples of the other material transition

functions and their derivatives.
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3.2 Matching material properties to HMX

Here we discuss our fit of the model’s material properties to mimic an energetic material like
HMX. Figure 3.1 shows a pressure-temperature plane that indicates regions where, from classical
and experimental considerations, HMX can be counsidered to be a static solid, liquid or a gas in
thermodynamic equilibrium. Some of the boundaries (specifically the solid/liquid boundary) are
known from experiment. Note that solid phases of HMX are not differentiated here and it is assumed
that the S-phase of solid HMX is representative. The solid/liquid boundary is of particular interest
and is computed via a Kraut-Kennedy law. It is well known that HMX liquid is quite unstable, [13]
and once the liquid phase appears it quickly evolves into gas, partly from exothermic energy released
by chemical reaction in the condensed phase. For the purpose of our early modeling efforts we have
decided to match the HMX melt temperature to the experimental melt temperature T' = 558 K
and the evaporation temperature at 1" = 588 K. Figure 3.1 shows a shaded box that represents the
range of temperatures and pressures (level of stress) predicted by computation with model.

In our model (p, V')-isotherms (where V' = 1/p) can be obtained directly from (3.1) by setting
all derivatives equal to zero and by assuming a homogeneous deformation such that B = (py/p)?/°I

and o = —plI, (where p is the pressure) to obtain

2v¢ 2
()@ -)"
b=l — - -\
o o Po

HMX liquid is approximately 4% less dense than HMX solid [4]. Figure 3.2 shows a plot of an

+ acKpﬁ(T —Ty) — pR,T. (3.10)
0

isotherm computed from (3.10) with values shown in Table 3.1. Experimental data points on the
solid isotherms obtained by Yoo and Cynn [85], are shown for comparison. Since HMX liquid is so
chemically unstable, experimental data for the liquid isotherm is not available. One implication of
the lower density for HMX-liquid is that the isothermal sound speed (the negative slope of the p—V
isotherm) is greater in the solid than in the liquid. Figure 3.3 shows a plot of an isotherm computed
from (3.10) for the ideal gas term that is proportional to R,. Figure 3.4 shows a representative
isotherm on log-scales at 300 K, for the full range of values for the model, when the material is

solid, liquid or gas, as computed from (3.10).

o4



1010

10°

10%

Pressure (Pa)

10°

5 | ] ]
10300 550 800 1050

Temperature (K)

Figure 3.1: Solid curve is melt temperature-pressure relation for S-HMX given by the semi-empirical
Kraut-Kennedy law [54],[47]. Dashed line and long-dashed line are constant melt temperature and
vapor temperature used in the current numerical simulation, respectively.
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of sound is greater in the solid than in the liquid HMX.
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Figure 3.3: P-V isotherms at four different temperatures for HMX vapor (¢ = 2).
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Figure 3.4: P-V isotherms for solid, liquid, and vapor HMX at T' = 300 K, drawn to a single range
of P-V axes.
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3.3 Form of the model for three simple motions

Here we consider the differential equations for the model when the material undergoes three simple
motions: (i) evolution at constant volume, (ii) time-dependent longitudinal motion and (iii) one-
dimensional, time-dependent shear motion. All three cases are amenable to extensive computational
and theoretical analysis and their discussion reveals the underlying mathematical properties of the
model. All three are very important in the traditional analysis of ignition of energetic materials.
The reduction for the three special motions follow directly from the general form of equations

(3.2-3.7) and were derived in the last section of Chapter 2.

3.3.1 Evolution at constant volume

An important simple case often considered in combustion theory describes constant volume thermal
explosion, where the velocity v as well as all spatial gradients are exactly zero and the density is
constant. For illustration (in this section only) we neglect thermal expansion, and assume a constant
specific heat and gas constant. We are left with three ordinary differential equations in time for

the temperature, 7', phase variable ¢, and reaction progress variable A,

oT T T 0
PCv 5 :p<ﬂ7ln(¢)ﬁQm+52(<P)f)Qv) a—f-l-,OthQ-i'pT, (3.11)
0y B 1 110F , T , T
5% — gl g0 (1) @ur o) (£ - 1) @] )
oA
5= Q. (3.13)

If phase change is discarded we recover the equations from standard combustion theory for constant
volume thermal explosion, ¢,(07/0t) = Qpc2,(0A/0t) = Q . Of course, the more interesting
behavior occurs when phase change is included.

Figure 3.5 shows an example of the time evolution of constant volume heating without chemical

reaction starting from a solid (¢ = 0) at an initial temperature of 7' = 300 K. The heating rate
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Figure 3.5: Constant-volume phase transformation without reaction.

r and the kinetic parameter B, control the transformation rates. It is possible to see (at least
qualitatively) all of the phase change behaviors expected during constant volume heating. As
heat is first applied, the temperature increases linearly. As the temperature increases further, the
material begins to melt and the endothermic process absorbs heat from the system. (In Figure
3.5 the slight temperature decrease is barely visible in the nearly constant temperature interval).
At the completion of the phase transformation to liquid, the temperature rises in the liquid at a
constant rate until the vaporization temperature is reached and second phase transition from liquid
to gas phase occurs. After that, constant rate heating in the gas occurs.

The sharp transitions that are apparent in Fig 3.5 (for example near the times ¢ = 0.05 and
t = 0.09 sec) are the result of a bifurcation and a change of stability in the ODEs near the
transition temperatures, 1, and 7T,. To see this clearly, consider the stability of the solid phase
during constant rate heating. The temperature and the phase variable can be represented to leading

order as T' =Ty +rt/c, and ¢ = 0, (with A = 0 for all time), so that a stability analysis assumes
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that 7" and ¢ take the form

T=T0+Lt+T’(t)+... o=¢{t)+.... (3.14)

Cy

where T" and ¢’ are assumed to be small. The linearization of (3.11), (3.12) with g}, = 6¢’ and

OF[0¢ =~ 8¢’ is straightforward and leads to equations for T”, ¢

dr’

- 0, (3.15)
dy! p well 7O ,
kN A - 1—— 1
dt B { 6Qm T, v (3.16)

where T is the leading order temperature found from simple constant rate heating

7O =15+ ¢ (3.17)

Cy

The stability properties of the solution for ¢’ are governed by the sign of dy¢'/dt found on the
right hand side of (3.16). For early times, the argument is always negative, since 7O < T, and
Qm < 0. Consequently, the solution is exponentially stable. (It is a simple matter to right down
the exact solution of (3.16) ). As the temperature rises, the stability changes as d¢'/dt changes
sign, and this time is found by setting the right hand sign of (3.16) exactly equal to zero. In which

case the leading order temperature is

2 \I,WGH

(0) — 2z
10 =T = 55T (3.18)

For the case where |\IfWell /Qm| << 1, the phase transition temperature associated with this simple
change of stability is close to T},. So we find that below the melt temperature the perturbations
are stable, but near the melt temperature the stability changes type and becomes unstable. Any
perturbation grows and subsequently an abrupt transition occurs from ¢ = 0. Another point is
that our assumed properties for F' strictly requires a nonzero perturbation of ¢, to be combined

with heating, in order to observe a phase transition. In other cases than constant volume evolution,
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Figure 3.6: Constant-volume thermal explosion.

other source terms exist in the ¢-evolution equation (specifically those related to derivatives of the
Helmholtz free energy associated with deformation) and those can be the source of thermomechan-
ical disturbances that can grow when the phase becomes dynamically unstable.

Figure 3.6 show a representative solution to (3.11-3.13) with an Arrhenius form assumed for
Q= A(p)(1 = \) exp[—E,/(R,T)]. The function A(yp) is chosen to be zero in the solid phase and
takes the value listed in Table 3.1 in the gas phase. Initially the material is solid and cold and heated
at a uniform rate. So the phase transformations from solid to liquid to gas occur in the same way as
shown in Fig. 4.1. However, for this example, once the gas is in abundance, the chemical reaction
starts and the gas undergoes a classically well-understood constant volume thermal explosion. If
we had chosen to adopt a more complex kinetic form for €2, reaction could take place first in the
liquid phase. In the near future, we plan to use more realistic kinetic scheme for HMX. Clearly
there is the flexibility within this formulation to model many aspects of condensed phase energy

release.
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3.3.2 Longitudinal motion

Next we consider simple longitudinal motion. Typically, explosives are tested by subjecting them
to impact with a flyer-plate. In an idealization of this experiment, an infinite slab experiences
a displacement loading normal to its surface. As a computational matter, the same flow can be
modeled as a reverse impact experiment, where the sample is set into uniform motion and suddenly

comes to rest at the origin. We must consider following one-dimensional motion
1= X1+ fi(X1,t), z2=Xy, 1z3=Xj, (3.19)

where f; is the displacement in the 1-direction. There is one nonzero velocity component, v; =
0f1/0t|x (X1,t), and F and B are both diagonal and By1 = (1 + f])?, Bos = 1, B33 = 1. The first
and third invariants of B are Ig = 2+ (1 + f])? and Il = (1 + f])? = (po/p)?. Then Iz — 3 =
(po/p)? — 1. Hence we use the density as the independent strain measure and replace f;. The one
nonzero component of the rate of strain tensor is, D11 = dv1/0dz1. Also (6(,0@6(,0)11 = (0¢/0x1)2.
It follows that all the shear stresses are zero, o195 = 093 = 013 = 0, and the normal stress o1y, is

given by

2v¢

1—2v¢ -2
o1 = —fc <£) [(ﬁ) - <£> ] —a. K2 (1 — 1) - pR,T
Po Po Po Po
8’1)1

o 2
— PV (8—;;1) + (v + 2“f)8—a;1 - (3:20)

The governing equations for longitudinal compression are the mass and momentum equations

0 op 0
P ot pt

e 21
ot " ow; TPa, =V (3.21)

() 2 (2) (g)ﬁ%_(g‘?
Pot ™ o 01 | " \ o P0 P0

2
p 3<p 8’01
ochpO (T —Tp) — pRyT — pry, <8x1> + (vy +2py) o } , (3.22)

62



the energy equation (written in temperature form)

"\ot "oz, ) T 0y \"0m PR By

. 0
+ By? — [acKpﬁT + pRg(go)T] e
0

Oz

+{ - Gallo)K AT In(iLa) ~ SpR) ()T (i) — p ()T (T T0)

4|87t B Q| b4 p @+ r (320

and the phase and reaction progress evolution equations, given by

B @f + gf) = 8%1 <m¢§7¢) + pe, () [T In(T/Tp) — (T = Tp)]

_Mp(
2 po

3) - é 2 /i (1 —Vc2vc) (m;uc/(uuc) 3 1) B 3#12«0) pﬁo m/?
y ol KL (1 1) () + 5pR, ()T (1)

0
- §p\I’WGH£ -p [ﬂin(w) <% - 1) Qm + By(v) <T£U - 1) Qv] , (3.24)

and

oA oA\ 9 [ 0A
X A a2 1 p0. 2
p<8t+v18x1> Ern ( 8:1:1>+p (3:25)

This special formulation is a set of five PDEs for the dependent variables p,v1,7T, ¢ and A in terms
of the independent variables z; and t.
3.3.3 Shear motion

The specialization of the equations to shear motion lead to PDEs in one space variable and time.
The nominal geometry is a slab of fixed thickness loaded at one surface with constant velocity.
The other surface is taken to be fixed (zero displacement) for the entire duration of the test. We

counsider the following shear motion
T = X1+ fi(Xo,1), 2= Xo+ fo(Xo,1), z3=Xj3, (3.26)
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where f; and fy are the in-plane displacements, which can also be regarded as functions of the
spatial coordinate zs and time ¢. Corresponding to this motion one has the velocities with
v1(x9,t),ve(x2,t), v3 = 0, and 9/0x; = 0/Jx3 = 0. The expression of the material time derivative

is given by () = 0/0t + v9 0/0z3. The shear deformation is described by

1 fi0 1L+ f12 A+ £) 0
ox;
(F)m'—aX’j 0 14+f 0 ,(Blij=FF )= |f1+f) A+ of , 327
o 0 1] 0 0 1|
1] 1)
ov ov
, 0 52 0 0 1m0
(L)m_(v'v)ijzasz 0 22 of, (D)= |ign 2= of . (3.28)
0 0 0 0 0 0

ij
The invariants of B are computed as Iy = 1+ f1+ (1 + f5)2 + 1 and M = (1 + f3)% = (po/p)>

with 1+ f3 = po/p. Also Iz —3 = (po/p)2 — 1 + f/%. In addition from the kinematic identity,

F = LF we obtain two nontrivial relations f{ = (14 f})0v1 /04 and fé = (14 f})0vy/Ozy, where

the material derivative is () = 0/0t + vy 0/0z2. The second of the two results is equivalent to
replacing 1 + f4 with pg/p. The first is an independent expression for the shear strain which can
be recast in terms of the density and transverse velocity gradient as

T po\ v

=(=]—. 3.29

W= ()5 (3.20)

Finally, Vo®V has only one nonzero component, (Vo®@Vp)ag = (0p/0z29)?.
We use the density p and the shear strain f;, as the two independent kinematic variables. We

can now write down expressions for the components of the stress tensor. The cross plane shear

stresses are zero, i.e., 013 = 023 = 0. The in-plane shear stress 012 is given by the expression

v
012=Msf{+ﬂf8—x;- (3.30)
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The in-plane normal stress g9 is given by

022 = —Me |\ —
Po

(2

2v¢

)1zuc B <ﬁ>2] _acKﬁ(T_TO)—pRgT

Po Po

0

The specific governing equations for the shear motion are
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,0< 8t +U28{L‘2) N 8.T2 |:N8f1 +'uf8$2:| ’

9]
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(3.32)

(3.33)

(3.34)
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dy dp 0 dp ,
Bl—4v9y—)=— — |+ TIn(T/To) — (T —
<8t V9 8@) 914 <P7<p 8@) pcy (@) [T In(T/Ty) — (T — To)]

! / _ /
B us(w)g(IB gy Help) p (1= 2vc) (m_uc/(l—zuc) _ 1) ~ 3py(p) Pl

2 po 2 po Ve g 2 po
a(e) . p 1
+ C; )K%(T ~ To) In(llLs) + 5pRy ()T Wn( 1L )
_1 We]]a_F_ / T -1y / T-T,
ST P B () 7 Omt Bu(e) 7, @l (3.36)

oA oA 0 oA
AR I (el IO .

’0<8t +”2ax2> s (d 8x2> Tp (3:37)

Finally the kinematic relation (3.29) for the shear strain (which must be included) is expressed as

’ <3_fi N ‘9_fi) _ o (3.38)

Po 8t 2 8?[12 B 8—.T2 '
This special formulation is a set of seven PDEs for the dependent variables p, vy, v, T, ¢, A and f]

in terms of the independent variables z9 and .

3.4 Numerical methodology

We have implemented an efficient high-order temporal scheme for stiff equations based on the
method of lines (MOL) to solve for longitudinal and shear motions. The MOL method can be
implemented for various choices of spatial discretization. For discretization of convective terms we
use a fourth-order convex essentially non-oscillatory (ENO) method [42] combined with a third-
order, low-storage, semi-implicit Runge-Kutta method [82] for the MOL-ODEs. We will describe

the ENO discretization in Chapter 4.

3.4.1 Description of low-storage semi-implicit Runge—-Kutta solver

A more comprehensive discussion of the temporal scheme can be found in [82], and only a brief
description of the method is given below. To solve a system of autonomous ODEs of the form
u' = f(u)+g(u), we use an explicit scheme for the non-stiff term f and use an implicit scheme for

the stiff term g. We solve the system in an explicit/implicit hybrid fashion to achieve high-order
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accuracy and stiffly stable calculation. A typical third-order method of this kind is given below:

kj = ajkj,1 + h[f(uj,l) + g(uj,l + Ejkj,1 + Cjkj)]
u; = Uj-1+ bjkj (339)
(j = 17 ' 73)

1 15 8 5 153
by = = by= o b= — -2 _ 190
173 277 P71 “®T 79 BT I
1 49 143 59 5283
= — = — = — Co — — —— () — ———— 4
U755 2T75 CT600 2T 13m0 4T 25600 (3.40)

with a1 = 0,¢; = 0.
In many instances where implicit calculation is not required, one can simply assign zero to
the stiff vector g and assign the entire source as a non-stiff vector f and the standard explicit

Runge-Kutta scheme is recovered.

3.4.2 Implementation

Before starting the computation one writes the governing PDEs in a conservative form such that
limiting forms of the equations admit discontinuous solutions which are also admitted by the nu-
merical approximation. Further, the stiff and nonstiff terms must be intelligently separated. In
particular, convective terms, which are a priori discretized in space via fourth-order convex ENO
scheme, are always treated as non-stiff terms. The viscous stress terms of momentum equations are
treated as non-stiff, and are discretized by a fourth-order central differencing. Only the reaction
source term, €2, is treated as stiff and is subjected to the implicit numerical procedure. Otherwise
the explicit method solves all the remaining terms of the equations.

We consider the shear motion to illustrate the numerical implementation. After converting the

equations into a conservative form and separating the stiff and non-stiff terms, we can write the
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conservative variables and the fluxes as follows:

o | [ —Rew ] 0
pU1 —% (pv1ve + 012) 0
PV —% (pvave + 092) 0
u=| pc, T |.F= —% (pcoTvy) +wy |- and g= | 0 (3.41)
pp — & (ppva) + wy 0
pfi —2 (pfiva) + pod 0
2 R A2 s

where wy and wy are the right hand side source terms of T" and ¢. The convective terms are
discretized by the fourth-order convex ENO scheme [42] and the resulting semi-discretized equation
u; = f+g are a system of autonomous ODEs in u are integrated in time via the third-order Runge-

Kutta method as discussed earlier.

3.5 Simulations of longitudinal and shear motions

We have validated the code written for the full model through a series of graduated tests. Since
equations that correspond to classical elastodynamics and classical gasdynamics can be obtained
simply by suppressing the appropriate terms, limiting versions of the code be used to solve problems
with exact solutions, like standard Riemann problems, or small amplitude linear wave propagation.
For example, Riemann problems have been computed for a special case of an ideal gas. In the special
limiting case of small-displacement elasticity for shear motions, with the assumption of constant
material properties, one can show that there are dilatation waves that travel at \/m
and shear waves that travel at \/pus/po, where Ay = 250/ (1 — 2v,).

3.5.1 One-dimensional shear motions

Here we discuss representative solutions to initial boundary-value problem that represents numerical
experiments for shear motion. The problem set up as follows: A slab of material 15 mm thick
in the z9 direction is initially at an elevated temperature and suddenly subjected to a constant

velocity shearing motion at the edge zo = 15 mm while the edge at zo = 0 is held fixed. The
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material is thermally insulated. For the purpose of these experiments, the gas phase is suppressed
and does not appear; hence the transitions documented here occur only between solid and liquid.
We show representative results for two different initial conditions. First, we consider the initial
temperature at 550 K with the constant shear velocity of 600 m/s, dubbed Shear Case A. In the
second case, the initial temperature is slightly above the melting transition temperature at 560
K with a lower shearing velocity of 200 m/s, dubbed Shear Case B. Shear Case B exhibits more
complex dynamics associated with multiple regions of phase change. Both cases show generic
elastic wave interactions and reflections within solid-fluid regions. The computational domain has
500 points spread uniformly over 15 mm.

Figures 3.7 and 3.8 show wz9—t contour plots of the thermodynamic variables T, ¢, p, p, the
velocities v1 and vg, and the displacement gradient f{(X3). Initially the hot sample, just below
the melting temperature at 550 K is exposed to the wall shear at 600 m/s. The rapid shearing
at 9 = 15 mm produces sufficient heating to cause rapid melting in a thin layer near the moving
boundary. This is easily observed in Figure 3.7a and 3.7b for the temperature I', and phase variable
@, respectively. The shearing motion is then confined mostly to a thin shear layer as seen in Figure
3.8a for velocity v1, (in the direction of the imposed motion at 9 = 15 mm). Note that the shear
wave in the solid associated with vy is clearly observed as a wave that initially enters the domain
at z9 = 15 mm and travels toward zo = 0 mm and subsequently reflects off the stationary wall.

Figure 3.8b, for vy, displays waves that travel at the dilatational wave speed which is approxi-
mately twice the shear wave speed. The dilatational waves are generated by the initial growth of
the melted layer and are associated with pressure waves of magnitude of approximately 10® Pa = 1
KBar. Note that the initial stress in the system is elevated due to the effect of thermal expansion
at the initially raised temperature. Close inspection of the temperature and pressure fields shown
in Figure 3.7a,c shows evidence of high frequency acoustic waves that can be traced to reflections
and transmissions of waves through the solid/liquid interface near x9 = 15 mm.

Figure 3.9 shows computed profiles for Shear Case A for p,T,p, and ¢ at times 5, 15, and 30
pusec, which represents time cuts across Figure 3.7a-d. The profiles show elevated temperatures and
phase change (melting) confined to the layer near the o = 15 mm boundary. The fluctuations in the

pressure, density and temperature profiles are the result of the acoustic disturbances propagating
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through the solid and across the solid/liquid layer.

Note that the layer of liquid that develops at z9 = 15 mm is a localized shear layer and can
be thought of as a shear band. The material in the melt layer has very large vi-velocities and
subsequently undergoes large deformation. The material in the solid phase essentially remains
fixed in place as the fluid layer slides across it.

Shear Case B has the solid with its initial temperature slightly above the melt temperature,
suddenly subjected to a (lower) constant shear motion of 200 m/s. As in Case A, a melt layer forms
near zo = 15 mm and the dilation wave travels across the slab. After reflection at the fixed wall, a
second melt layer develops near xo = 0 mm. Figures 3.10 and 3.11 show the additional complexity in
the x9—1t record. The second melt layer causes additional scatter of waves generated near the 9 = 15
mm boundary, and in turn the growth of the layer generates additional disturbances which transmit
through the regions. One recalls that there are additional terms in the ¢ evolution equation that
are associated with the deformational part of the stress. We clearly see that the stress waves (by
themselves) can induce the phase transformation. One sees transient phase generation carried on
the sub-characteristics in the phase variable plot Figure 3.10b. The next set of experiments for

longitudinal motions, illustrate shock melting.

3.5.2 One-dimensional longitudinal motion: Reverse impact

The results discussed next are for two different longitudinal motions where a HMX specimen of
thickness 15 mm is initially solid at the melt temperature (7" = 558 K) and subjected to a reverse
impact at speed —500 m/s for Longitudinal Case A and —200 m/s for Longitudinal Case B. The
computational domain spans the 0.015 m with 500 mesh points.

For Longitudinal Case A, Figures 3.13 and 3.14 illustrate the phenomena of shock melting as
predicted by the model. Figure 3.13a-e clearly shows the emergence of a shock wave from the
stationary wall into the oncoming stream. Ahead of the shock, the material is solid, with ¢ = 0,
behind the shock the material is liquid with ¢ = 1. The model predicts a shock with definite
spatial structure as illustrated by the structure profiles taken at ¢ = 3 usec and shown in Figure
3.14. In the shocked state, where the material has liquefied, there is a significant pressure increase

to about 2.8 GPa (28 KBar) a 20 % density increase, and a drop in the temperature due to the
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endothermic nature of the phase transformation. The pressure and density rise monotonically across
the shock structure. The temperature increases slightly, then drops with the onset of the phase
transformation from solid to liquid. Throughout the structure, the phase changes monotonically
from solid to liquid.

Longitudinal Case B corresponds to a reverse impact experiment where the impact speed is
reduced to —200 m/s but the initial temperature is raised slightly to 560 K, just two degrees above
the melt temperature. Figure 3.15 shows the z;-¢ contour plots. Figure 3.16 shows corresponding
line cuts taken at time ¢ = 3 usec. Similar to Longitudinal Case A, shock induced phase trans-
formation occurs, however a stable intermediate phase is produced behind the shock front with
¢ = 0.33. Interestingly, the model can be shown to allow these intermediate states in ¢ due to
the contributions of the other stress-dependent source terms proportional to ul(¢), (@), al(p),
etc. as found in equation (3.5). A complete analysis of all possible p-states and their stability is
beyond the scope of this paper. However, we can illustrate the stability of the intermediate state
for Longitudinal Case B by a numerical evaluation as follows. We take the evolution equation
for ¢, (3.24) to be rewritten as %—f = _Ulg_:zi + w9 where ws is the source term for the material
derivative of . We then take the shock structure as obtained numerically at ¢ = 3 usec for both
Longitudinal Case A and B and plot d¢/0t versus ¢ in Figure 3.17. Stable equilibria points (in ¢)
are found by the zeroes of dp/0t. For Longitudinal Case A, only ¢ = 0, and ¢ = 1 are stable with
0p/0t = 0. But for Longitudinal Case B, the intermediate state ¢ = 0.33 is found to be stable.
Our numerical experiments suggest that increasing the intensity of the reverse impact causes the

intermediate states to disappear with ¢ = 0,1 as the only stable equilibria.
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Figure 3.7: Temperature, phase, pressure, and density fields for a representative shear experiment

(Vghear = 600 m/s, To = 550 K).
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3.6 Conclusions

We have illustrated that our model, fit to a real material, leads to predictions of simple motions
(constant volume evolution, shear motion, and longitudinal motion) that are plausible. The model
has the property that the constitutive theory automatically changes with the phase and is consistent
with classical properties of that phase. We have shown that it is possible to fit the model to the
known behavior of a real material.

Although idealized, the representative numerical experiments exhibit extremely rich behaviors.
Strain localization phenomena occurred via melting in thin layers in many of the trials we have
conducted. The phase change phenomenon is directly coupled to the material loading through the
change in material type and changes in properties that are carried with the phase. We are ready
to apply this new continuum model to more complex physical problems of interest to us. Of course
extremely interesting and varied mathematical problems, such as steady traveling waves and their
multidimensional stability, will arise that can profitably be analyzed by asymptotic means. The
models embedded within this larger model may have greater application to the general theory of
phase transformation. Of specific near term interest to us is a detailed study of the mechanically
induced ignition of an energetic solid. We also plan to pursue a simplified version of this model
to more fully examine the processes of classical melting/freezing and vaporization/condensation in
the context of the model. We also anticipate the near term application of the model to problems

of vaporizing fuels and condensed phase propellant combustion.
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do/dt

Figure 3.17: dg/dt versus ¢ for the two specialized reverse-impact experiments discussed. By
varying the initial temperature, T, meta-stable state (¢ ~ 0.33) is shown as a local equilibrium
point on the experiment represented by the square symbols. In contrast, the experiment shown by
hollow circles suggests that ¢ = 1 is the only stable equilibria once the initial state is perturbed
about the unstable point at ¢ = 0, corresponding to the solid state under the impact loading.
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Chapter 4

High Resolution Multi-Material
Impact: EM (Explosive)

In this chapter, we describe the development of the multi-material shock dynamics code aimed
to solve the system of three dimensional multi-phase continuum equations. The major goal of the
simulation was to capture the essential physical phenomena that take place in a material undergoing
solid-liquid-gas phase transitions and chemical reaction when sharp discontinuities, such as shock
waves and material interfaces are present. The two general methods are implemented to account
for the discontinuities. One of them, the ghost-fluid-method (GFM), is used to track the material
boundaries, while the ENO takes care of discretizing the governing equations in a manner suitable
for capturing the sharp shock fronts. The code is fully parallelized for any shared memory processor
(SMP) machines.

When dealing with deformations in complex materials, it is standard practice to use a La-
grangian representation of the solid, allowing computational grids to deform with the material, and
there is no ambiguity associated with the convection between nodes and points. Finite-element
methods that use this approach are considered to be a suitable spatial scheme to calculate both
elastic and plastic material deformations. An Eulerian approach, however, is preferred in the field
of high-speed gas dynamics. The reason for that is the extent to which gases and fluids are more apt
to deformations when compared to solids. Instead of calculating the shape of deforming material by
mapping the spatial configuration on the displaced meshes, Eulerian approach leaves the shape to
be accounted for by means of either interface tracking or capturing techniques. The latter approach

is more favorable in presence of high rate of deformations or complex geometries. Over the years,
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a wide range of multi-material shock capturing techniques emerged (see [7], [31], [34], [38], [46]).
In most cases, the solid phase calculations are performed with the finite element approach, while
the hydrodynamics code is used to resolve the gas phase. These codes were capable of capturing a
number of significant effects, such as material deformations, and for the large load rates, inter facial
debonding and void formation. Yet, the nature of the material treatment simplifications made in
these models inadvertently made them unable to reproduce many other interesting and important
material behavior features.

We use our continuum description of energetic materials to create a model that is able to
represent a material that may behave as solid, gas or liquid, depending on the dynamic phase
transformations that take place. The model adopts itself and given the state of the material it has
to account for, produces the sub-models to describe deformed solid or, when the solid is shocked
and melts (or evaporates), to bring up the system of reactive Euler equations. In addition, the
equation state has similar adaptive capabilities. In order to define the regions of applicability of
each sub-model, the method uses a modified version of level set technique. This way, solid and gas
media can be placed in ‘layers’, such that we can allow flow variables to connect between the fixed
mesh points and work with added geometrical complexity.

In what follows, we will elaborate on the techniques we use to perform the high-order robust

parallel computation.

4.1 Numerical method

Multi-material wave interaction problems may involve sharp material interfaces, contact surfaces,
shocks, phase-transformation fronts, and detonation surfaces. there are two basic approaches to
resolve the sharp evolving fronts. The first approach is tracking of the surface. In this approach,
one would need to track the location of the jump and satisfy the local boundary conditions across
the jump. An alternative and most widely used approach to treat sharp fronts is the capturing
approach. Instead of maintaining the sharp profile, one would assign a best smooth curve across
the grid nodes of the jump and eliminate the necessity to apply the jump conditions across the
fronts completely. Most of modern shock treating schemes are of the latter kind as well as the

essentially non-oscillatory (ENO) schemes.
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We will use the ghost fluid method [27] for treating the sharp material interface and high-order

convex ENO scheme for capturing other discontinuities of the flow field.

4.1.1 Level set and ghost-fluid-method

We use the level set equation

— tuv—F+v9— = 0 (4'1)

to track the location of the material interface represented by the zero level curve of ¢(xz,y). Initially,
¢ starts out as the normal distance function to the boundary represented by ¢(z,y) = 0, and in
time the function will be evolved with the local velocities v; and vy. Resolving the advection of
¢ allows to track the exact location of material interface as a position of moving distant function
where its value is equal to some specific value. So, as we further discuss how the other jumps in
the flow field are treated, we want to emphasize that the material interfaces are tracked with the
level set function.

Once the mechanism of tracking the location of interface is written down unambiguously, we
look into the actual multi-material treatment in the light of GFM technique. First, one needs to
identify that there is the real fluid (material) and the ghost fluid. Behaving like the real fluid in
every way, the ghost fluid is represented by the nodes included beyond the material interface, and
looks just like another fluid. In other words, both pressure and velocity of the ghost fluid of fluid
1 are the same as those of fluid 1, whereas the entropy is of fluid 2. And the opposite is true for
the ghost fluid of fluid 2. In this way, one is able to prescribe the interface conditions in an elegant
fashion without any explicit boundary jump conditions. Of course, entropy may not be always
computed either density or temperature can alternatively be chosen as the thermodynamic variable
which makes the fluid ‘look’ ghost.

In particular, the term, ‘isobaric-fix’ variable is reserved for entropy, density, or temperature,
and is the variable under one-sided extrapolation from the real fluid side to the ghost zone. Under
a constant pressure, the ideal EOS admits hyperbola on a p-T plot. Depending on p, each isobar
represents a possible value of p and T'. It is shown in [28] that spurious oscillations near a rigid wall

(or a piston) can be avoided by properly modifying the either p or T of the ghost points representing
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the wall interior while other flow variables are calculated from the differential equations. For
instance, p is the isobaric-fix variable and its value in the ghost region are obtained by the one-

sided extrapolation from the real fluid region.

4.1.2 General ENO scheme for spatial discretization

Details of this section can be found in [64, 42]. The conservative form of a one-dimensional hyper-

bolic system of differential equations takes the form

dq 1 .
pri A—m(fjur‘ - [

~

) = o0 (4.2)

N[
D=

The numerical fluxes, f as they are called in the general ENO methods, are the determining
ingredient of order of accuracy, and different versions of ENO (or earlier versions of TVD) schemes
emerge depending on the kind of numerical fluxes constructed. Below, we will describe the general
ENO construction of these fluxes to a high-order. The special version of high-order scheme called

convex ENO will be explained later.

The fluxes in (4.2) are generated from the combination of the upwind and downwind portions

represented by

i) = 30@+a.50
fra@ = 50@-ay.y0) (4.3)

We note that variation of definition of a which controls the amount of viscosity or diffusion of a
scheme results in different variations of these fluxes. In this work, the local Lax—Friedrichs fluxes

are counsidered by specifying

df

dq

1 = . max
min(g;,q;j+1) <g<max(g;,qgj+1)

, (4.4)

to consider the largest eigenvalue of the flux Jacobian, df /dg, on the local computational domain
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of (¢;,¢j+1). The first order local Lax-Friedrichs flux is defined as follows:

it = Fale) + £ ): (4.5)

1
2
The second order flux is written as
A 1
LLF
it = @) + f(g) = e 1(g41 = ¢)]

+ i[e(T;r)(AJrf(Qj) + %ur%AJer) - 5(7“]‘_+1)(A+f(%+1) - aj—|-%A+qj+1)] (4.6)

where

Argy = F(gj+1— g5)
v B Sl) Faghog) @)
J (A4 flgy) + aj—|—%A+Qj)
_ (A f(gj+1) — ;4 1A-gj11)
r
o (At fgi+1) — ;4 1A44j11)
and for £, we chose the minmod limiter, given by
£(r) = max (1, min(r,1)). (4.8)

High-order convex ENO scheme

Here we describe the high-order convex ENO scheme [42]. We want to build a high-order (> 3)
approximation to the local Lax—Friedrichs flux f (z). To do this, we first define a function H(z),
whose derivative with respect to z; represents a non-oscillatory approximation to the flux f (z) at
each grid points. For the clarity of discussion, we choose the upwinding procedure as H,EnH(m)
involving the points (z;_1,z;). Here (n) represents the order of approximation and v labels the

candidate interpolants as they are constructed in the section below. The downwinding version can

be derived in an analogous way.
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The first order polynomial interpolant to the upwind flux is
HWH(z) = Hlzj] + Hlzj1, 25 (@ — 2-1) (4.9)

where we use the square bracket to denote the divided difference coefficient of the Newton in-
terpolating polynomial. A table of these coefficients for each points in the computing grids can
be constructed in a straight forward manner, and below we list those for up to the fourth-order

polynomial:

Hlz;] = H(z;),
Hlwjq1] — Hlz]

Hlz: z:1] =
[, 241] Tl —a;
Hlzji1, 2509 — H|lzj, 7541
Hlzj, zj1,0j42] = 2 ’ﬂg‘+2]—$‘[ — ],
J J
Hlx;i 1, x50, xiq03| — Hlx;, xip1, 25409
H[$j7$j+17$j+27$j+3] _ [ J+1yLg+2, Ly+ ] [ 7y Lg+1s L+ ] (410)

Lj+3 = Lj

Differentiating (4.9) with respect to z and evaluating it at z; gives the first order approximation
HO'™(z5) = Hlzjy, )] (4.11)

Now, the second order interpolants are of two kinds involving the points (z;_2,2;_1,2;) and

(zj—1,2j,2j41). In other words, we find that

HP () = Hlzj o]+ Hlwj o, 1](5 — 25 2)
+ Hlzjo,zj 1, 75)(x —zj2)(x —zj-1)
HP (@) = Hzja]+ Hlzjr,zj)(z — zj_1)

+ Hlzj1, 75, 550)(z — zj-1)(@ — z)). (4.12)
As in the first-order case, we evaluate the derivative of the second-order interpolants at z; and find,

H£2)’+(~Tj) = H[«Tj—% fjfl] + H[a:j,g, Zj—1, fL‘j](3ACL‘)
H§2)’+(xj) = Hlzj_1,z;] + H[zj_1,2j, Tj41](Az). (4.13)

89



Here, we make the convex combination of H §2)’+(a:j) and H52)1+(xj) which is closest to the lower

order approximation H (1)'+(a:j). So the second order interpolant based on this decision process is

found as H®'* (z;).

As for third-order, there are three interpolants involving points from (z;_3,z;_2,2j_1,2;),

(Tj—2,%j—1,2j,2j41), to (¥j—1,%5,Tj41,%j+2). They are

B () = Hlzj_s)+ Hlzj_3,5j2)(x — zj_3)

+ Hlzjs,2j 9,55 1](z — zj-3)(z — zj_2)

+ Hlzjs,zj 9,551, z)(x — 5j-3)(z — zj2)(z — z5-1)
H (@) = Hlzjoo] + Hlzj_z,3-1](z — 2j_0)

+ Hlzj,wj1,7](z — wj2)(x — zj-1)

+ Hilzjg,zj1,5jzj1](x —zj-2) (@ — zj1)(z — ;)

H (@) = Hlej)+ Hlojr,a5)(0 = 2;1)
+ Hlzjr,zj,zj0)(x — zj1)(z — ) (4.14)
+ Hilzjr,zj, 2501, 242)(@ — 2j1) (@ — 25)(@ — zj11) (4.15)

whose derivative evaluated at z; becomes

H£3)/+($j) = Hlzj_3,zj o]+ Hlzj 3,2 9,2;1](5Ax)
+ Hlzj 3,2 9,7;1,7;](11(Az)?)

HP' () = Hlzj_g,251]+ Hzj_9,3;_1,2;)(3A1)
+ Hlzjo,zj-1,25,2j41](2(Az)?)

H (2)) = Hlzj_1,2;)+ Hlzj 1,55, 3541 (Az)

+ Hlej1,05,0501,2542)(~(Ar)?) (4.16)

Now, using these interpolants, we will illustrate how a third-order convex ENO scheme is con-
structed. Similar procedure will apply for any orders higher than three. The weighted difference d,,

is evaluated between all candidate interpolants (v = 1...3) for third order (n = 3) and the second
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order (n — 1) interpolant. For illustration purpose, the convex-weighted differences are tabulated

for n = 3 involving three possible interpolants labeled v = 1... 3 as follows:

di = e (z) ~ HY (z)))
dy = o(HS (@) — HO'*(2))

ds = cy(Hy" " (@) — H?'F (2))
If all are of the same sign, we find the smallest of these difference and denote it d,g with
HY (2)) = HY (7). (4.17)
Otherwise, the lower ordered interpolant is chosen so that
HOF(z;) = HY'F (1), (4.18)
Values of ¢, are ¢; = 1.0,¢c0 = 0.7, ¢3 = 1.0 for third order and ¢; = 1.0,¢c3 = 0.7,¢3 = 0.7,¢4 = 1.0

for fourth order.

Thus, we construct the third-order local Lax—Friedrichs flux by adding the upwind portion as

outlined above and the downwind portion analogously derived:

fLLF = H'+(xj+%)+H/_(x (4.19)

jt+3 j—l—%)'

Substituting this into (4.2) sets up the differential equations for the Runge-Kutta scheme discussed
in the next section. In the calculations included in this paper, we have used the fourth-order local

Lax—Friedrichs convex ENO scheme with the third order Runge-Kutta scheme.

4.1.3 Low-storage semi-implicit Runge-Kutta scheme

A detailed discussion of this temporal scheme can be found in [83], [84], so only a brief description
of the method will be given here. To solve a system of non-autonomous ODEs of the form u' =

f(u,t) + g(u,t), we like to use an explicit scheme for the non-stiff term f and use an implicit
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scheme for the stiff term g. Essentially, we solve the system in an explicit/implicit hybrid fashion

to achieve high-order accuracy and stiffly stable calculation. A typical third order method of this

kind are given below:

(

L

By = BF (v t0) + glt + 51020y + k)]
U1 = U, + b1 kq
ko = asky + h[f(to + roh,u1) + g(to + soh, w1 + Cokq + coka)]
Uy = uy + boko
ks = aszks + h[f (o + r3h,us) + g(to + ssh, us + c3ks + c3ks)]
uz = ug + b3ks
ks = asks + h[f(to + rah,u3) + g(to + sih, us + caks + caka)]

Uy = U3z + b4k4

where h is the time increments, and the coefficients of the scheme are given as follows:

b = 3/4 by = —2/27 by =2

b, =2/3 as = 23/4 a3 = —1/9
a; =—5/2 re = 3/4 rg =1/4
r; =3/4 s; =2 s9 =T79/28
sy = 127/84 s, =11/84 ¢ =2

cg = 10901/12096 cg = 7601/1344 c; =3/4

¢s = —1027/256 cs = —817/36288  ¢; = —605/168.

In many instances where implicit calculation is not required, one may simply assign zero to the

stiff vector g and assign the entire source as a non-stiff vector f; the standard explicit Runge-Kutta

scheme is recovered. Several other versions of the low-storage hybrid Runge—Kutta scheme can be

found in [78], [77], [67], [26].
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4.2 Mathematical formulation

In this section, we describe the governing equations for a compressible gas and a Blatz—Ko solid.
The following two subsections list the one-dimensional and two-dimensional form of the equations
as they are used in the multi-material shock-physics simulation.

4.2.1 One-dimensional equations

The basic compressible gas equations can be written as

p pv
pE pEv + pv

t

Here v represents velocity and E is the total energy per unit mass, while p is the pressure. The

total energy is the sum of the internal and kinetic energy
Ly
E = e+ 7Y (4.21)

where e is the internal energy per unit mass. Using the gamma law, one can express the internal

energy as

e = L (4.22)

ply—1)

with the ratio of specific heats, v. Thus two gases with different v would essentially represent
distinct materials with unequal entropy.

When no phase change occurs, the continuum equations for energetic materials in the general
tensorial form from the earlier sections can now be written in the one-dimensional formulation.

The single component of the displacement gradient shall be denoted by f:

p pv 0
pU +| p? -0 =10 (4.23)
pcy T pcyTv w
t x
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where the Cauchy stress o and the energy source w take the following one-dimensional form:

1

o = ucﬁ(l + 112 = pe <£) T pRT — omi(T - T5) + I/f(g—Z) + ZMfg—Z (4.24)
and
w o= ﬁaQ—I; + (vy +2py) <8_v>2 — pRT@ — Lokt v (4.25)
Oy ox or  po ox
with
ﬁ = 5 j 2 (4.26)

Hence, we use the density as the independent strain measure and replace f’. Pressure can be

deduced from the stress term as the negative of the non-deviatoric part, such that

M((l + )2 +2) + pRT + a2 (T —T,)  (4.27)

1
5o 14+ Y Tz —
p Ius( f) 3 po

4.2.2 Two-dimensional equations

In two dimensions, the governing equations for both the compressible gas and the Blatz—Ko solid

can be expressed by a system of hyperbolic PDE

ou oOF 0G

Sttty =S (428)

where U is an array of the conservation variables, F', G represent the spatial fluxes, and S represents
the source.

In the case of a compressible gas in two dimensions,

1) pU1 pPU2
2
pu1 pvi +p pU1V2
+ ! + =0 (4.29)
pPU2 pU2V1 pv3 +p
pk . pEv + puy pEvs + puy
x
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where v; and vy are velocities in « and y-directions, respectively and E is the total energy per unit
mass, and p is the pressure. The total energy is the sum of the internal energy and the kinetic

energy, such that

E = e+ -(vi+3) (4.30)

with e being the internal energy per unit mass.
The two-dimensional equations of Blatz—Ko solid are considered without the phase-field equa-
tions. In two dimensions, the solid may deform in both = and y directions. Following the descrip-

tions of the full continuum laws of energetic materials of the earlier chapter, we find

p pU1 pU2 0
pu1 pvi — o1 pUIV2 — 012 0
pv2 P2V — 021 pv3 — 092 0
pcy, T pcy Ty pCyTvg w

+ + - ,

pH1 pHi1v pH11v2 p (%— + Hyp) + 92 H21>
pH1o pH1ov1 pH1ov9 p (%_1H1 + 8U1 (1+ Hyy )
pH2 pHazv1 pHaov2 p (%—y + Hop) + 92 H12>
pHa . pHov1 y pHaivo , p (%LHm + ‘%Z 1+ Hn))

(4.31)

where ¢, is the specific heat at a constant volume, and Hii, Hoo are the z and y component of
longitudinal deformation gradient while Hi9 and Ho; are the shear components of the displacement

gradient tensor H. Furthermore, the source of the internal energy pc,T is

w = W (FT TN (om w\E, |(Ou) (o O\t (00
B ox?  Oy? I\ oz oy R\ oz 2\ dy Oz oy
Jdvy  Ovg P Ovy  Ovg
_pRT G2) Pkt (L 92 4.32
ot (Gt + G ) - Zawt (G + ). 432)
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where

p 1

— = . (4.33)
Po V(A +Hi1)? + HE) (HZ + (1+ Ho2)?) — (1 + Hi)Ha + Hiz(1 + Hy))?
The components of Cauchy stress are defined as follows:
1
1—2vg
o = e Hi)? 4 B - (ﬁ)
Po Po
P 87)1 87)2 8’01
—pRT — ak—(T — T, — + = 20— 4.34
v v
o2 = /Jsﬁ[(l + Hy1)Ho + Hio(1 4+ Ha)) + uf(—1 + 22 (4.35)
Po dy ox
o991 = 019 (4.36)
1
1-2vg
o2 = pso[(1+ Ha)? + H3] — p, <£>
Po Po
P 87)1 87)2 8’02
—pRT — ak—(T — T, — + =)+ 2ur— 4.37
P Om'po( 0)+Vf((9a:+(9y)+ gy (4.37)

As in one-dimensional case, ‘pressure’ of this two-dimensional formulation can be derived as the
non-deviatoric part of the stress with a minus sign, such that

1

1-2vs 1

Po= (—/f) = o (U H)? o+ (U Hoo)? o+ HEy o+ Hy o+ 1]
o o

+pRT + an (T - T)). (4.38)

o

Thus far, two-dimensional equations of the compressible gas and the Blatz—Ko solid are de-
scribed. To carry out the multi-material simulation involving both gas and solid, we list a complete
set of governing equations in a flux form by defining the arrays U, F', G, and S. For an illustration
purpose, we consider a Blatz—Ko plate in contact with two different compressible gases on either

side. Below, each array represents three distinct materials in contact with two level set functions
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representing the material interfaces:

pU1
P2
Pk
pP1
pP2

Of the 18 conservative variables, the first four describe high-explosive Euler gas, the next eight are
for the material modeled after a Blatz—Ko material, the next four Euler variables model a light gas
next to a Blatz—Ko material, and the last two are for the level-set passive scalars.

keep only 16 variables as the conservative variables by excluding the level set functions and do an

pU1
pot +p
pPU2U1
pED + pin
pU1
pv —on
pU2V1 — 021
pcy Ty
pHy1vq
pHi9v1
pHaoovq

pHaivq

AA

pU1
PO} + p
P20
pEb) + pin
P11

pPav1

pU2
P17V
pU3 + P
pEB + pis
pU2
pU1V2 — 012
pv3 — 092
pcy TV
pHy1vo
pHi2v2
pHoovo

pHaivo

AA

pU2

AN A

pU1V2
pu3 +p
pEby + po
PP102

pPP2v2

independent time marching for convecting the passive scalars.
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4.3 Code description

The code is written in Fortran 90. Though it has been optimized extensively for one processor
calculations, the code further benefits from the parallelization. We chose the Open MP paradigm
in its standardized use on a shared memory processor like the SGI Power Challenge 10000. Unlike
the MPI (message passing interface), where each processor communicates by means of message
passing, Open MP communicates through the variables (addresses). In this way, tasks that first
developed in sequential pattern can be parallelized with placing Open MP directives wherever
parallelizable.

We take the full advantage of Open MP supports for incremental parallelization of the sequential
program developed a priori. The most fundamental task of optimization is the loop parallelization
where each of the total number of processors divides the outer most coarsest do-loops into pieces.
This is in most cases beneficial provided that the maximum loop count is greater than 500. Below,
a sample Runge-Kutta step routine is written in Fortran with Open MP directives to illustrate the

parallelization implementation:

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k %k %k %k 3k %k 5k kK k

SUBROUTINE CONVEXENO4-RK3

2k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok %k ok ok %k ok >k k %k *k

#include <common.hd>

! - STAGE 1 -
C$0MP PARALLEL SECTIONS DEFAULT (SHARED)

C$0MP SECTION

CALL
CALL
C$0MP SECTION
CALL
CALL
C$0MP SECTION

CALL

£i11_£(U)

f_flux_11£(U)

£i11_s(U)

s_flux_11£f(U)

£ill_g(U)

C$0MP END PARALLEL SECTIONS

C$0MP PARALLEL DO PRIVATE(i,j,k)!

assigning flux in

making ENO fluxes

assigning flux in

making ENO fluxes

assigning sources

performing j-loop

x-direction

in x-direction

y-direction

in y-direction

in parallel
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do 20 j = 0, ymesh
do k = 1, SYSDIM
do i = 0,xmesh

Ui(k,i,j) = U(k,i,j)

& - (deltat/deltax)*(f_flux(k,i,j)-f_flux(k,i-1,j))
% - (deltat/deltay)*(s_flux(k,i,j)-s_flux(k,i,j-1))
% + deltat*(g(k,i,j))

end do

end do

20  CONTINUE
C$0MP END PARALLEL DO

! Likewise stage 2 and 3 can also be parallelized in this fashion

RETURN

END

In addition to loop parallelization, one can also assign different tasks to each available processor.
Three independent flux assigning and calculating ENO fluxes are task-parallelized in the step before
entering the do loop process in the sample code. In other instances, where entering of a parallel
region by each thread (processor) must be controlled, one can take an advantage of the following
directive to allow just one thread passing at a time.

C$0MP CRITICAL
parallel region

C$0MP END CRITICAL

Here each tread will wait for the previous thread to complete the task within the parallel region

before entering the region considered.

4.4 Numerical simulation

4.4.1 One-dimensional cases
“Ring-up” problem.

One possible testing of multi-material capability is to perform the classical “ring-up” problem: two
different gases with different densities are in contact while the left boundary is driven by a piston
at 500 m/s and the right boundary is open to a compliant boundary, modeling a vacuum (see Fig.

4.1). Table 4.4.1 lists the running parameters of this experiment. An incident shock generated
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GAS1 GAS-2

Compliant
boundary

Figure 4.1: “Ring-up” test problem.

by the right-running piston travels in a lighter gas medium (p = 0.01kg/m®) whose thickness is
1.436 c¢cm. Using level set function to track the material interface in the GFM fashion, we expect
to observe the incident, transmitted, and reflected states of the piston-generated shock.

By keeping track of the characteristic invariants, it is straight forward to find out the velocity
of the incident shock which is generated by the right-running piston at 500 m/s. The analytically
obtained value of the shock speed is 4041 m/s. Inspecting the numerically obtained result, we
can approximate the calculated shock speed by taking the slope of the incident wave observed on
the z—t contour. Figs. 4.2 and 4.3 are the numerically obtained results during the transients. By
inspection, the shock speed is approximately 4080 m/s, suggesting a good agreement with the exact
value.

As the shock from the piston driver is incident on a material interface separating the two
different gases, additional shocks and expansion waves are generated in both sides of the material.
The motion of the material interface between the two gases as seen in the density contour is
essentially the particle trajectory as it is typically referred to. The simulation is run until all three
interfaces of the problem are parallel to each other at time &~ 40 microseconds, when the initial
state before the start of the ring-up is recovered. We can deduce from the resuit that the global

energy balance which began as a stationary potential energy has transformed to a mainly kinetic

Piston Gasl (1.436 c¢m) Gas2 (0.5 c¢m) Vacuum model

v 1.4 1.4 1.4
p (kg/m®) 0.01 0.0128 0.0128
p (Pascal) 1.0 x 10° 1.0 x 10° Dinter face
v (m/s) 500 0 0 Vinter face

Table 4.1: Running parameters of piston-driven laminate
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Figure 4.2: Space-time contour of density (kg/m?").
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Figure 4.3: Space-time contour of pressure (Pa).
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Solid explosive

Gas/solid interface

Figure 4.4: Schematic of typical hot-spot ignition setup.

energy during the busy ringing stage. Once the ringing shock interactions die out such that the
layer propagate uniformly at the piston velocity, density and pressure of the initial phase are back
to their initial values. Thus the ring-up test problem has been used to validate the mathematical

formulations and also the multi-material simulation.

Hot-spot ignition of HMX

Another application of the multi-material shock physics code can be drawn from the hot-spot
ignition of explosives (see Fig. 4.4). Vacancies and irregularities of a single HMX grain is modeled
by hot inerts with detonation pressure of a typical high explosive. As the hot gas expands toward
the neighboring unreacted solid explosive, a shock is transmitted into the solid unreacted explosive,
and a material interface separating the inert and reactive HMX follows the local thermomechanical
conditions. Depending on the size of the pore, detonation pressure, and the kind of solid propellant,
£0-n0-go ignition criteria can be constructed for the explosive.

We model the hot inerts by the mock-up high explosive products gas as discussed in [2] and
the solid explosive with the continuum equations for HMX. Then the interface between the two
materials is compuated with the GFM technique. The initial high pressure of the inert is set to 300
kbar to resemble a typical detonation pressure. We further assume the spherical symmetry with a
(r,0, ¢) coordinate representation.

Figures 4.5, 4.6, and 4.7 are the space-time contours, expressing the wave structures within the

103



solid media as they interact with the incident detonation wave. One can distinguish the material
interface (or contact surface) from the shock by comparing the pressure and density contours.
Because of the complexity of the nature of the continuum equations for energetic materials, a wide
spectrum of shock reflections are observed in these figures. In one instance close to the time at
1.25 x 10~2 micro-second, an isolated regions of a liquid can vaporize a-priori at a point or in a small
region before the arrival of the evaporation front. In the phase contour in Fig. 4.6, three distinct
colors (regions) are shown to represent the three phases of the materials, from the reacted product
(or vapor), melt region (liquid) and the unreacted region (solid). The displacement gradient field
is also calculated through out the Eulerian description as the non-elastic HMX undergoes strain
deformation. Regions with high strains are also marked by the location where the pronounced wave
interactions occur.

Since the experimental evidence suggest the onset of chemical reaction takes place well after
the phase transformation of melting of HMX, we have computed these results without the reaction
mechanism. We do predict that the inclusion of the detailed reaction mechanism of HMX will

further enrich the behavior of multi-material ignition simulation.

4.4.2 Two-dimensional cases
Shear induced melting

The purpose of this two-dimensional numerical experiment is essentially to simulate the melting
behavior of two different materials modeled by the continuum equations derived in the earlier
chapters. The case of two pieces of nonlinear elastic materials under a severe shearing motion has
its industrial applications in the explosive welding [48]. Two plates of different densities (8.9 g/cc
and 7.8 g/cc) are initially separated by an air gap on the order of micron. The outer layer of one
Blatz—Ko material is coated with an explosive which is ignited to initiate shock wave traveling at the
speeds typical of detonation waves. As the shock wave traverses the top layer, the transmitted shock
wave forces the upper layer to collide against the receptor in the shearing motion. Experimental
observations support the fact that intially elastic solid materials under heavy shearing motion can
undergo a melting transition and further the mixing or binding of the two different materials can

occur by means of an instability develops around the contact surface. Upon cooling of the materials,
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Figure 4.5: Space-time contour of pressure (Pa). (Ar = 4.2 x 1078 m, At = 2.0 x 10~ sec)

105



1.0e-08

time (s)

0.0e+00

0.00001 0.00002
r (m)
0 1 2
phase

Figure 4.6: Space-time contour of phase-field. (Ar = 4.2 x 1078 m, At = 2.0 x 10~ ! sec).
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Figure 4.7: Space-time contour of density (kg/m3). (Ar =4.2 x 1078 m, At = 2.0 x 107! sec)
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the liquid layer goes back to its solid state and the final product of the experiment is a welded
single piece of what initially was two different materials.

We simulate this two-dimensional dynamic melting and shearing motion between the two ma-
terials using our equations for a material that supports phast transitions. Shown in the Fig. 4.8 is
the initial set of two materials before applying the shearing motion. The computational grid is 100
by 50 in z and y directions, respectively. A large shearing motion of 6000 m/s in is imposed on
the materials. With time, we start to observe the propagating phase fronts separating melt layers
from the solid media. Fig. 4.9 shows a band of liquid phase where the two materials are under
heavy shearing motion. The z-directional velocity in Fig. 4.8 shows the unstable nature of the slip
line between the two liquidus materials, where the rolling up of the interface resembles the classical
Kelvin—-Helmholtz instability in the liquids and gases.

Although the numerical experiment is performed just as far as the initiation of the mixing
motion between the two materials, our model can in fact simulate the freezing process in which
the liquid-banded region can undergo another phase transition back to the solid phase by forcing
the temperature to go down well below the melting temperatures. Basically, we have accom-
plished two things from performing the particular experiment. We have first properly modeled the
multi-dimensional melting, likewise the evaporation, of energetic materials under hard straining.
Furthermore, by the evidence provided by the presence of Kelvin—Helmholtz-like instability, the

fluid characteristics of the liquidus materials are also modeled by our overall continuum equations.

Detonation shock interaction with Blatz-Ko elastic plate

Figure 4.10 depicts the two-dimensional multi-material interaction experiment: two detonators
(sources) are placed vertically three centimeters apart and a plate of thickness one centimeter is
placed at one centimeter away from these sources. To the right of the plate, there is a lighter fluid,
modeled by an Euler gas with density close to 1 g/cc (i.e. water).

The condensed phase explosive gas resembling the HMX products is placed on the left side of a
solid plate under consideration. For simplicity, we assume that there are no phase transformations
in the plate and that no reaction occurs in the explosive region. Instead, we initialize a hot-spot,

filled with inert product gas with p = 300 kbar, p = 2 g/cc, v = 3, and simulate a strong pressure
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Figure 4.8: Initial setup (top) and final velocity profile of shearing of two Blatz-Ko elastic materials
of different density.
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Figure 4.9: Temperature (Kelvin) and phase variable shown from top to bottom.
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H.E. Metal Gas

Detonators

Figure 4.10: Two-dimensional shock-plate interaction problem.

wave propagating in the radial direction.

As for the material representing a plate, the shear modulus us for copper is used, whose value
is on the order of GPa. The strain energy of the plate is of the classical Blatz-Ko material form for
solid whose undeformed density is 7.9 g/cc.

Unlike the previous case involving phase changes in the solid HMX, the Blatz-Ko plate sim-
ulation of this section is rather simplified. The numerical experiment is a simplified model and
melting/freezing is precluded. Instead, the focus is on shock formation, generation of high strains
in the shocked solid material. Finally, to the right of the plate, we place a lighter dense fluid,
modeled by an Euler gas with vy = 1.4 and p =1 g/cc.

Figs. 4.11 and 4.12 depict the z—y contour density and pressure field at an instant when the
incident detonation bow shock has made its way into, and beyond both material interfaces of the
plate. As pressure field does not show the material interfaces separating the gases from the solid,
one can observe the deformed shape of the material as internal boundaries exactly tracked by
means of level set functions. Transmitted, reflected, and Mach shocks are all present inside the
solid medium where a pair of triple points is generated as these waves interact with each other. The
kind of shock structures observed in the material is classical in a sense that any two-dimensional
shock traveling down the channel will develop triple points. This means that the equation of state
of the material modeled through our counstitutive equations are capable of transforming into an

compressible Euler gas in the presence of a strong shock. Figs. 4.13 and 4.14 show earlier snap
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shots of both deunsity and pressure fields. Similar shock structures are observed within the solid.
Peak density within the solid field is about twice the undeformed density. With only 200 mesh
points in both directions, we were able to resolve shocks, rolling-up slip lines separating the Mach
stems and reflections. However, we still suffer from consequences of using the Eulerian fixed grids,
so that a great improvement in the resolution is possible in the regions of main interest with the
help of adaptive refinement techniques. At this stage, though, we are taking the maximum benefit
of the multi-processor computations by dividing the task within the calculations and the elegant
treatment of the material interface within the Eulerian approach. With added features of the
current version of multi-material code, we will be able not only to resolve the shock structures, but

also to simulate the pinching-off behavior of the material interface.
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Figure 4.11: Density (kg/m®) contour at an instant when the incident shock has penetrated through
the second material interface of a Blatz-Ko elastic plate. Grid of 400 by 400 points spans a physical
domain of 3 cm by 3 cm.
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Figure 4.12: Pressure (Pa) contour at an instant when the incident shock has penetrated through
the second material interface of a Blatz-Ko elastic plate. Grid of 400 by 400 points spans a physical
domain of 3 cm by 3 cm.
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Figure 4.13: Density (kg/m3) contour at an instance just before the incident shock contacts the
second material interface of a Blatz-Ko elastic plate. Grid of 400 by 400 points spans a physical
domain of 3 cm by 3 cm.
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Figure 4.14: Pressure (Pa) contour at an instance just before the incident shock contacts the second
material interface of a Blatz-Ko elastic plate. Grid of 400 by 400 points spans a physical domain
of 3 ¢cm by 3 cm.
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Chapter 5

High Resolution Multi-Material
Impact: Inert (Metal)

In this chapter, we describe a specialized version of the multi-material hydrodynamic code that
we have discussed in the previous chapter. In particular, the governing equations are essentially
the Eulerian equations of a compressible gas with additional evolution equations that govern the
physics of elasto—plastic solid deformation in the high-speed impact events. Detailed discussion of
this specialized methodology is found in Ref. [80], and a complete discussion on a subject of metal
plasticity can be found in [44], [9], [30], [37], and [43].

In order to simulate the dynamic deformation of ductile materials, we need an additional consti-
tutive model of metal plasticity. Before we present a mathematical formulation of the multi-material
impact involving elasto—plasticity, we first describe the evolution equations for the dynamic defor-
mation of metals. An additional scalar called the effective plastic strain is introduced and its
evolution law is derived based on the classical small-strain theory [5]. The Cauchy stress as it is de-
fined in the spatial coordinate, consists of two terms—the volumetric term and the deviatoric term.
Because the theory is based on the classical strain assumption, one does not explicitly calculate
the elastic strain field during the dynamic deformation event; instead, the total rate of strain or
the velocity gradient is calculated to update the history of deformation in the plastic constitutive
relations. In the sections below, we will elaborate on the derivation of the additional evolution laws

that are required when considering the material plasticity.
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5.1 Elastic—plastic solid modeling

The constitutive relation for the Cauchy stress tensor is that the dilatational response is governed
by the equation of state (EOS) while the deviatoric response follows classical plastic flow theory.
In particular, the ideal EOS of a compressible reactive binary mixture is used for the explosive gas
as our projectile, while the Mie—Gruneisen EOS is used to represent the hydrostatic pressure of an
elasto—plastic metal such as copper. In this section, preliminaries related to the subject of elasto—
plastic material modeling will be addressed. Both experimental and numerical benchmark results

of Taylor-impact testing of a copper cylinder validate the results obtained through the present code.

5.1.1 Preliminaries

The linear elastic constitutive law suggests the Cauchy stress of a Hookean solid by
o = Mgl + 2u€, (51)

where we have assumed the ideal linear elastic solid without viscosity. Unlike the non-linear elastic
material (e.g. Blatz—Ko) formulation of the previous section, we here concentrate on the small-

strain deformation represented through the small-strain tensor,

(H+H")
1{ Ou ou "

- - ) 5.2
5 <8X1 e ) (5:2)

Also, we may express o in terms of its deviatoric part and the volumetric part:

M>
Il
N | =

1
o = s+ 3 trol (5.3)

= s—pI (usingp=—3%o ) (5.4)

where we have used the hydrostatic pressure p to represent the volumetric part of the Cauchy stress

in this idealized case. For later use, we define the velocity gradient or the deformation rate tensor
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Making a substitution for o in (5.4) by the expression in (5.1), we may express the deviatoric

N | =

stress in terms of elastic strain, namely,

N
sij = 2p(€;j — g&ndij)

where we have introduced the primed (’) notation to represent the deviatoric part of the argument.

Furthermore, we define the total strain increment de as a sum of elastic and plastic strain:

de = dé+ deP. (5.6)
Then, the corresponding deviatoric incremental strain can be expressed as

de’ = dé + de’ (5.7)

where we use the plastic flow rule to replace de? with de? using the fact that eﬁk = 0. We will

elaborate on the flow rule shortly. From (5.5), we can express the incremental deviatoric stress as
ds = 2u(de' — deP). (5.8)

5.1.2 Derivation of evolution laws of plasticity

There are many ways to reach the plastic flow and material plastic deformation. The overall goal is
to determine the stress or rate of change of stress given the current stress, some measure of current

deformation or deformation rate, and some measure of the history of deformation.
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We start the derivation of evolution equations of plasticity by defining a yield surface f(o,€P)

f = o(oc)—H() =0

where ¢ and H represent the effective stress and hardening function, respectively. This function
describes a surface in stress space, where the inside of the surface (i.e. f < 0) is the elastic region.
Yield and subsequent plastic flow take place on the surface. Along this surface of yield, we can

infer that the small change in f is also zero; in other words, the derivative of f can be evaluated

so that
_ 9f of 1
df = 9o rdo + agpde
0o OH
= _— — ——deP =
9 - do o dé 0.

Upon rearranging, we have the condition for incipient plastic loading

06 0H
—:do = —dé. 5.9
Jo Oep (59)
In order to evaluate the derivative of effective stress with respect to the Cauchy stress, the von
Mises criterion is used to define 6 = @/%s : 8, so that upon evaluating the derivative, g—g, (5.9)
becomes

;s :do = H'de® (using H' = dH/dé"). (5.10)
o

Using the fact that s : do = s : ds, we may write (5.10) as

i_s :ds = H'dé. (5.11)
20
Using (5.8), we find
§ﬂ2 (deb; — del’.) = H'de? (5.12)
5 2n(dey; — deij) = e .
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In order to derive an equation for an incremental effective plastic strain de’, we now need to
introduce the plastic flow rule based on the plastic potential theory by von Mises. Similar to the
elastic potential theory, where the elastic strain is obtained by the derivative of strain energy U
with respect to the Cauchy stress o, the incremental plastic strain, or equivalently the material

derivative of it can be expressed by

. 2 aQ(U ) A
ij = GpaTi;], (analOgya €5 — 367({]- )

where von Mises has proposed a plastic potential function ()(o;;) whose gradient is proportional
to the plastic strain by a factor of €. A common approach in plasticity theory is to assume that
Q(0ij) = f(0ij,€), a yield surface. This says then, the plastic strain increment is in the direction

normal to the yield surface f (since %(a) 1 f(o)). Evaluating %, we find

. 3 .

which is also an empirically determined plastic flow rule (Levy—Mises equation).
The Levy—Mises equation based on experiments or plastic potential flow theory can be viewed

as giving a ‘direction’ to a scalar, €, so that R, as defined by

may represent a direction tensor. Thus we can express the incremental plastic strain defj in terms

of the effective plastic strain deP, a scalar, by giving a direction normal to the yield surface f = 0:

3 34§ , 3855 13-
Finally, solving for dé”, we may write
1 . dé’
d& = LS (5.14)
1+5; ©

In summary, we have derived evolution equations for € and s by replacing the increments with
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o,
do = S(g) de
do = Ede
do = H’ (&%) d&”

€ €

Figure 5.1: Universal stress—strain curve from a simple tension test.

material derivative, such that

5 = 2ué + Qs —s0

= 2u(e —€’) + Qs — s (Usinge =D")

3s.
— 2u(D' - §gep) + Qs — 50 (5.15)
. 1 : D'
Ep — 7[{,5 — s (516)
1+ Em o

where €;; are the components of spin tensor, defined by

1
Qij = 5(vij = vji).

The €2;; terms in (5.15) arise because constitutive laws based on Hooke’s law are formulated from

objective stress rates as observed in the material frame rotated back to the laboratory frame [23, 38].
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5.1.3 Hardening laws

According to Fig. 5.1, simple tension test result is used to illustrate the distinction between the
elastic strain € and the plastic strain € and that summation of the two represents the total natural
strain e. Experiment provides a plastic response function S(e) whose derivative represents a slope
of the stress—strain curve ‘2—? As before, a constant elastic slope is denoted E as in Fig. 5.1. The
function H(€P) is called a hardening function which, in our case of copper, follows an isotropic

hardening law. In other words, we assume
H(&) = o,+ Ey(e)e (5.17)

where o, is a constant yield stress and H'(e’) represents the slope of the stress versus effective
plastic strain €’ curve. In particular, in this case of simple hardening, H'(e?) = E,(€P), a plastic
modulus. Noting that S’ and E are the slopes of o0—¢ and o—€ curves, respectively, we can express

H' in terms of S’ and E:

H(@) = — 1_L
S'(e E
_ S(eE

—_— m- (5-18)

~—|

For the Taylor impact testing of copper, it is sufficient to assume linear hardening. This sim-
plifying assumption allows us to replace S’(e) with a constant tangent modulus E; and H'(eP) with
a constant plastic modulus £,. Table 5.5.4 lists the elasto-plastic response properties for a typical
copper.

In some extreme ballistic penetration events, a linear hardening of the previous section may not
be suitable where the flow stress may exhibit a strong rate-sensitivity. We consider a power law

where

€o

H(@) = o, <1+§>1/n. (5.19)

Here, € is an initial yield strain of a material, and n is the hardening exponent. Johnson and Cook

[35] suggest adding the effect of thermal softening to this conventional power law as less plastic
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behavior is expected of a metal as its temperature is close to the melting point. In other words,

the hardening law that we use, in addition to the linear relation in (5.17), takes the following form:

H@) = o, [1 - G;%TT)a] <1 + %)Un, (5.20)

where T, and T, are a reference temperature and a melting temperature respectively, and « is the

softening exponent. The derivative of the hardening law can be found as

1/n—1 a
@y = 2 (142 (=T
H@) = <1 + g{i) [1 <Tm —) |- (5.21)

5.2 Mathematical formulation
5.2.1 Two-dimensional equations of fluid—solid interaction with reaction
The flux form of the governing equations of the conservative variables is expressed by

oU OF  0G

where the variables U and two fluxes F', G are defined as

[ p ] [ pU1 ] [ pPU2 ]
pPU1 pv% +p PU1V2
U= pvy | . F= pPU1VY G = pv3 +p . (5.23)
pE vi(pE +p) v2(pE + p)
| A | puiA ] | pv2A
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The source terms are defined as

0

O0Sea 8819
ox + oy

S = Bov 4 S : (5.24)

%(vlsm + U284y) + a%(vlsxy + v28yy)

pA(1 — \)1/?

where we have used the definition of Cauchy stress, o = s — pI. If the material is a gas, the
deviatoric stress becomes zero such that the components of source vector S are zeroes with the
reaction rate term. In other words, the governing system of equations represents the reactive Euler

equations with the equation of state stated as

_ b
pe = TR PQcA. (5.25)

Here, v =3, Q. = 4 x 105m?/s?, and A = 2.5147 x 10%usec™!.
In the case of a solid, the components of a deviatoric stress must be computed using the
evolution laws defined previously. First, the pressure of an elasto—plastic metal is obtained by the

Mie-Gruneisen EOS, namely

c? — c — 2
p(e,p) = O(Vo V) 2 + I‘opov {pe - g (L)(VO—V))> } ’ (526)

Vo —s(Vo = V)] Vo—s(Vo—V

where V' = 1/p, ¢, is the speed of sound at ambience, s is the coefficients of Hugoniot data from
a shock test, and I', is the constant Mie—Gruneisen coefficient for a typical copper. The three

equations of deviatoric stress are

a;ix + 1 a;f + vy 8;;1- = 2u (D;,x - g%aﬁ + QamSma — SemQme (5.27)
0 0 0 3 5,y .

;zzy + 01 ;;’;y + vg ;Zy = 2u (D;y - 5%3) + QymSmy — SymQmy, (5.28)
9s 9s s 3 Say -

af;y + v a;‘;y + V2 azy = 2u <D;y - 5%&") + QemSmy — Semmy, (5.29)
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with sz = syz. And the evolution of effective plastic strain is governed by

oe? oe? oe? 1 (82aDyy + syyDyy + 285y Dy )
— — — = . 5.30
Bt +Ulax+028y 1+§{T: P ( )
5.2.2 Level set for interface tracking
We use the level-set equation,
0 0 0
99 L 02 10,9 _ (5.31)

ot ox Oy

to track the location of the material interface represented by the zero-level curve of ¢(x,y). Initially,
¢ starts out as a distance function, and in time the function will be evolved with the local velocity
v = (v1,v2). This advection of ¢ suggests that the location of material interfaces and contact
surfaces will be exactly tracked by the position of the moving distance function in time. As we will
discuss how other jumps of the flow field are treated, the material interfaces will be treated with

the level-set function.

5.3 Numerics

The discretized version of the system of PDEs in (5.22) can be solved in steps of space and time
methods. For our two-dimensional system, two fluxes in x and y directions are treated with the
fourth-order convex ENO scheme, which is a version of high-order shock capturing methods for
advection terms of the Fuler equation. Once the two advection terms are treated a priori, the
remaining system represents a system of ODEs rather than PDEs as its initial form, and can be
solved in time with a high-order stable method. We use the third-order TVD Runge-Kutta scheme,
which is guaranteed to be total-variation diminishing in the sense of Ref. [64]. This standard
approach in using shock capturing schemes to pre-process the advection terms of the hyperbolic
PDE is called a method of lines since per fixed spatial node, one marches in time. When depicted
on a graph of space versus time, this process of time marching per a fixed spatial grid, 7 or j, shows
straight lines parallel to the time axis. Among other reasons, this method-of-lines approach is

often favored over the space-time method in that the method can achieve order greater than three
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without any complicated coupling between space and time advancement. In fact, the space—time
representation of the PDE solver is a mesh, not straight lines, and thus it is called the method of
meshes instead.

For a thorough discussion on the subject of essentially non-oscillatory shock capturing schemes,
we refer the reader to [64, 42]. In the calculations shown in this work, we have used the fourth-order
convex ENO scheme by Liu and Osher [42]. As for the TVD Runge-Kutta method for advancing in
time after the spatial discretization has been completed via ENO, we use the following three-stage

scheme for the third-order integration:

ki = ko+ At[f (ko) +g(ko)],

ko = Ko+ AF (ko) + g(ko)] + 5 AMF (k) +g(k)],

4
By = ko GAHF (ko) +g(ko)] + g ALF(R) +g(k)] + S AMF(R:) +g(Ra)l,  (5.32)

where f and g represent the discretized spatial fluxes and the source terms of (5.22), respectively.

5.4 Interface tracking using level sets

A level-set function as previously defined provides a simple way to track material interfaces and
contact surfaces that divide two different media (or materials). In fact, almost everything we see
on a daily basis is exposed to this multi-material setting where either fluid—solid, solid-solid, solid—
void, or void—fluid are at all times in close contact. Two gases of different ratios of specific heat in
a Sod’s experiment can be easily handled by the use of level-set functions. A gas in contact with a
free-moving piston (or a vacuum) can also be modeled using a variational approach to the level-set
method. In this section, we will consider two main types of multi-material interfaces. First, we
consider the material-material contact, and second, we explain how we treat the material-void (or

vacuum) interface using a level-set function.

5.4.1 Material-material interface tracking

A detailed description can be inferred from references [51], [49]. Across the contact surface of any

two fluids or solids, pressure and velocity are smooth while entropy (likewise density or internal

127



Fluid or solid + Void or vacuum

(PO, u0,p0) | (p1,ul,pQ (P2, u2,p0 (p3,u3,pQ

2 e O O

i=-2 i=- i=1 i=

Interface

Figure 5.2: Schematic of material-void interface.

energy) and material properties may change sharply. This is especially over-burdening when nu-
merically solving the equations of motion at this internal boundary. Either the computed density
profile is widely dissipated or some spurious oscillations typically occur near the jump where well
known ‘over-heating’ effects are seen in most finite-differencing schemes. A level-set function, de-
noted ¢, is taken positive outside of material and negative inside. Therefore, the material interface
is the zero level set of ¢, since ¢ is initialized as the signed normal distance from the material
interface. In this case of any two materials (either fluid or solid) in contact, we use the standard
method of pressure update in each region based on the signs of the level-set function. Recall that
equation

ot +u-Vo =0

will move the zero level of ¢ exactly as the actual material interface moves. Since ¢ is a smooth
function, unlike the variables of the equations of motion, the level-set equation is solved easily.
The basic idea in tracking a material interface is to evolve the PDE in ¢ along with the full
motion of the two regions with distinctly varying material properties. Since only a single system
of conservation laws is needed to represent the motions of two materials in contact, additional
equations are needed to characterize the two materials. The equation of state in the form of p(e, p)
or e(p, p) is used to define the unknown of the system. In the case of a gas in contact with a metal
as shown in this work, we use the ideal EOS with the ratio of specific heats v as the main parameter
in the gas, and Mie—Gruneisen EOS is used in elasto—plastic metal with the Gruneisen coefficient

I" as the main parameter.
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5.4.2 Material-void stress-free interface tracking

Some examples of material-void contact include the interface between gas and a vacuum, gas and
a free-moving piston, and solid and a void. In all these cases, the stress-free condition must be
satisfied at the interface. Ideally, the zero density and stress characterize a vacuum. However, the
resulting large density ratio between vacuum and a material puts a significant constraint on any
solver, oftentimes leading to an early termination of computation and/or a very unstable marching
in both space and time.

We find a modified version of the ghost-fluid-method for the general two-material interface very
useful in the material-void contact [27]. Experience tells us that a typical density variation across
this type of interface is on the order of 10%. Either large oscillations or a smeared out profiles of
density are usually observed in a standard application of a level-set curve to update the pressure
on each side. Instead, one can avoid these inaccuracies associated with ill-conditioned methods by
a one-sided extrapolation of density (or entropy) inside the solid out to the vacuum region. Fig. 5.2
shows how a band of ghost nodes (e.g. i = 1...3) are populated by the first order extrapolation
in one dimension. Using the fact that both pressure and velocity across the material interface (or
equivalently a contact line in gas) are smooth and continuous while the density or the entropy
usually jumps, we extrapolate the discontinuous density field by assigning p;—¢ into p;—1..3. The
new field, called ghost zones, now have the pressure and velocity of voids (zeros if vacuum) while
their density is assigned as the extrapolated density value of the material in contact. Clearly,
solving the equation of motion in the new material-ghost zones is much easier as the entire field
is smooth without any discontinuities. As the level-set function is solved, the interface at ¢ = 0
position is advected with the particle velocity, while the exact location of material contact line is
accurately tracked.

At first, this simple technique might seem troublesome because the resulting flow field looks
different from the actual physical situation where a solid is in contact with a void. The ideal
equation of state for gas or Mie-Gruneisen equation of state for elasto—plastic metals as they are
plotted on e—p axes represents a hyperbola for a specified pressure. These curves with constant
pressures are essentially isobars representing different states—either gas or metal can exist given

a pressure state. So the idea of ‘modifying’ the density or the internal energy of voids while the
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pressure is remained constant suggest that we are shifting a point on this isobar to a different point
with density of actual material with corresponding internal energy. This technique, an isobaric fix,
as it is called in the fixing of the well known ‘over-heating’ problems of piston—gas interface is also
used in the material-void contact cases with its justification discussed extensively in Ref. [28].

In multi-dimensions, the one-sided extrapolation involves solving the PDE

oI ol ol

where I may be p or e depending on the equations formulated. We note that the two components

of the unit normal vector n at every grid point can be found by

Vo

n= Nz (5.34)

Furthermore, the signs in the PDE of the isobaric fix variable are chosen positive for normal pointing
from positive material (i.e. positive distanced level-set function) into the negative material. In other
words, we choose the + sign in the PDE to populate the ghost nodes in the region where ¢ < 0
with the values of I from the region where ¢ > 0. Similarly, we choose the - sign in the PDE to
populate the ghost nodes in the region where ¢ > 0. As it turns out, the equation needs to be
solved for only a few pseudo-time steps to populate a thin band of ghost nodes (7 = 1...3) needed

for the extrapolation.

5.5 Code validations

In this section, we describe special forms of equations representing an FKuler gas, a condensed high

explosive (HE), and elasto—plastic metals.
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The reactive Euler equations are the hyperbolic equation (5.22) whose fluxes are

[ p ] [ pU1 ] [ pU2 ]
pU1 pv% +p PULV2
U= | pvy |, F= PU1V2 ,G = pv3 +p . (5.35)
oE v1(pE + p) v2(pE + p)
| A | PULA ] | PUIA ]

The source term vector is defined as

(5.36)

o o o O

| pA(1 = N2

The ideal EOS for reactive gas with A representative of the extent of chemical reaction is given by

p o= (=) {pE - (0] +03) + @A}, (5.37)

where the gamma-law scalar is a function of the level set such that

M o ¢>0
1) = v <0 |- (5.38)
7 $=0

In the limit of high pressure, these hyperbolic PDEs without A can also represent a metal
under a large deformation and hydrostatic stress. This dynamic modeling of elasto—plastic metals
using Euler equations is especially useful for multi-material calculation of explosive and inerts,
and it benefits from a vast resource of computing technique already developed for high-speed
compressible gas dynamics. The equation of state (EOS) chosen to represent the pressure behavior

of high-strength ductile materials at an elevated pressure range of 10° Pa is the experimentally
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Gasl (50 c¢m) Gas2 (50 c¢m)

v 1.4 1.2
p (kg/m?) 1 0.125
p (Pa) 1.5 x 10° 1.0 x 10*
v (m/s) 0 0

Table 5.1: Initial parameters of shock tube Case A.

validated fitting curve called the Mie-Gruneisen equation. To illustrate the plastic model of our
code, we show how the source vector of the Euler equations is modified. From (5.22), the new

source representative of a metal becomes

0

Js 85.1:9
or T oy

S = Boov 4 Do , (5.39)

%(vlsm + V284y) + a%(vlsxy + V25yy)

0

where we have used the definition of Cauchy stress o = s — pI and the total energy pE = pe +

£(v? + v3). Instead of the ideal EOS, we use the Mie-Gruneisen EOS for metals so that

__ale—V) p_colVo—V) \*
R 7 T ) {”e -4 () } | (540

where V' = 1/p, ¢, is the speed of sound at ambiance, s is the coefficient of Hugoniot data from
a shock test, and I', is the constant Mie-Gruneisen coefficient. Table 5.5.4 summarizes these

constants for a specific metal, a copper.

5.5.1 Verification of order of convergence

Here we consider two different Euler gases initially brought to contact. Upon the removal of the
diaphragm between the gases with different +’s, an expansion wave and a normal shock propagate
in the opposite direction and a contact surface (or material interface) follows the right-running
shock. Listed below are the initial conditions of this experiment. Results shown in Fig. 5.3 are

calculated with 100 points spanning 1 meter in the x direction. We used the fourth-order convex
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Figure 5.3: Riemann problem involving two different gases used in the validation of rate of numerical
convergence.

ENO scheme with a third-order Runge-Kutta scheme. The material interface or the contact line
between the gases are tracked via the level-set approach using the one-sided extrapolation density
update as discussed previously. We note that there is absolutely no smearing across the material
interface.

We analyze the spatial accuracy by measuring the relative error E; in the L; norm during the
time integration to estimate the order of convergence as shown in Ref. [79]. The eight data points

(e.g. density) between z = 0.52 to z = 0.59 in increments of Az = 0.01 are compared with the

double grid data points at the same locations at time ¢ = 0.0007. The discrete L norm is defined

as

By = Y [ptXat — | A, (5.41)
i
If a method is of r th order, then for a uniform mesh with N grid points, the error should satisfy

EYN = O(Az™).
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N E1 Te

100 9.0 x 107° —
200 1.68 x 10~° 2.4
400 2.7 x 1076 2.8
800 1.8 x 1077 3.9

Table 5.2: Results of numerical test of convergence. In the table, N denotes grid points, E; is
the L; norm of error measured between the grids of size NV and 2N points, and r, is the rate of
convergence.

When the uniform mesh is refined by doubling the grid points, we should have

- of(2))

Then, one can solve for the rate of convergence, 7., and finds

In BN — In B2V
c = . 42
" In2 (5.42)

The L, error and the rate of convergence based on density are displayed in Table 5.5.1. The rate
of convergence is calculated using the formula in (5.42). The fourth-order convex ENO scheme is
tested in this 1-D shock tube exercise with level-set technique treating the multi-material interface.
Clearly, as the number of grids approaches oo, we observe that the computed rate of convergence
approaches the theoretical value of 4. Here, we make sure that At is kept small compared with Az
to make sure that no additional errors are coming from the third-order temporal scheme, which

will hinder achieving the theoretical convergence rate of 4 as tabulated.

5.5.2 Validation 1: 1-D shock reflection of two different gases

In the second shock-tube test, we start from a right-running shock that reflects off a contact line
at the center of a shock tube consisting of two gases of different . A part of the incident shock
running from left to right will be transmitted as there will be a right-moving interface separating
the two different shocks running in the opposite direction. The initial conditions are summarized
in Table 5.5.2.

Figure 5.4 shows the wave structures inside the tube after some period of time. Upon the

incidence of initial shock on the interface originally at x = 0.5 m, a part gets transmitted to
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Gasl (5 cm) Gasl (45 cm) Gas2 (50 c¢m)

v 1.4 1.4 1.67
p (kg/m®) 1.333 1.0 0.1379
p (Pa) 1.5 x 10° 1.0 x 10° 1.0 x 10°
v (m/s) 0.3535v/10% 0 0

Table 5.3: Initial parameters of shock tube Case B.
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Figure 5.4: Shock-tube test of shock reflection and transmission of two different gases.

the right-side gas, and part gets reflected while the interface between the two follows the local
particle velocity, moving to the right. Both the level-set method with and without the one-sided
extrapolation accurately captures the location of shocks in opposite directions. Noticeably, the
material interface between the two gases is resolved without any smearing in the one-sided extrap-
olated method while the transmitted and reflected shocks are a bit smeared out by the fourth-order

convex ENO scheme.

5.5.3 Validation 2: ZND structure

We test our multi-dimensional reactive Euler code by numerically obtaining a reaction-zone struc-
ture. A planar steady detonation wave with a Chapman-Jouguet (CJ) state at the burnt side is

initiated in a planar channel. The initial detonation profile in the high explosive condensed gas is
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Burnt Fresh

p (GPa) 32 10°°

plgfcc)  8/3 2

v (m/s) 2000 0
0% 3 3
A 1 0

Table 5.4: Initial end states of CJ detonation wave in a typical high explosive.

taken from the Aslam-Bdzil-Stewart (ABS) model from Ref. [2]. The value of y of HE is 3 and the
heat of chemical reaction Q. is 4 x10%m?/s?, while frequency rate of reaction A is given as 2.5147
x 108 sec1.

The two end states of the CJ detonation are defined in Table 5.5.3. Given the end states as
listed, the resulting Neumann’s peak is approximately 60 GPa with a reaction zone thickness of
4 mm, and the steady CJ detonation propagates at a speed 8000 m/s.

Shown in Fig. 5.5 are the pressure and A profiles along a single spatial axis. A theoretical
peak value of 60 GPa is reached in the current resolution of approximately 40 points covering the
reaction zone. Certainly, it would be beneficial to use extensive meshes in all regions of the flow field
without any adaptive meshing effort; however, we carry out our multi-dimensional computations
of this thesis with only a limited number of points—about 10 points across the reaction zone. This
level of resolution is tested to be sufficient to capture accurately the physics of fluid—solid interface

dynamics and behaviors of ductile metals during the ballistic penetration/impact events as shown

in the forthcoming sections.

5.5.4 Validation 3: Copper rod impact

A cylindrical rod of initial radius of 3.2 mm and a length of 32.4 mm strikes head-on a rigid wall at
a flying velocity of 227 m/s. The rod is made of copper, whose material properties in both elastic
and plastic limits are well known. We chose this impact experiment to validate our model and
numerics against the large resource of benchmark results both experimentally and computationally
obtained by others (see [87], [74], [36]). Table 5.5.4 summarizes the material properties of a copper.
For simplicity, we assumed a linear hardening law with a plastic modulus £, = 100 MPa. The final
deformed shape, length, and radius are compared with the benchmark results. Further, we expect

the effective plastic field to match with other calculated results. The calculation is run up to 80
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Figure 5.5: ZND detonation structure obtained through the multi-dimensional reactive Euler solver.
Az is 0.1 mm and consequently 40 points are placed in the 4 mm reaction zone.
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Material property Value

Density of copper 8.930 g/cc
Shear modulus (1) 43.222 GPa
Poisson’s ratio (v) 0.35
Young’s modulus (E) 117 GPa
Plastic modulus (E,) 100 MPa
Yield stress (o,) 400 MPa

Mie—Gruneisen coefficient, I', 2.0
Mie-Gruneisen coefficient, s 1.49
Speed of sound, ¢, 3.94 km/s

Table 5.5: Material properties typical of copper.

psec. For this run and all other computing in this thesis, we rely on our in-house eight-processor
SGI Origin.

In Fig. 5.6, we show a representative fixed Cartesian grid used in our Eulerian calculation. The
Lagrangian mesh used in the benchmark numerical result [19] is shown at the final time, ¢ = 80 usec.
In Fig. 5.7, the computed result of copper rod impact at a crushing velocity of 227 m/s directed
downward is shown with a scaled image from Ref. [19]. Both figures are representative of the final
(i.e. t = 80 pusec) deformed shape of the initially 6.4 mm by 32.4 mm in diameter and length. The
run on the left by Camacho and Ortiz (1997) is obtained from the FEM-based Lagrangian solver
with the finite-strain plasticity model. Based on the high-order ENO scheme with the level-set
functions tracking the material interface, the computed Eulerian result on the right-hand side is
strikingly similar to this benchmark numerical result. In fact, the plasticity model on the Eulerian
code is based on a small-strain theory with a linear hardening law; yet, the computed plastic strain

field is quantitatively in agreement with the result compared with the maximum value nearing 3.

5.5.5 Validation 4: Rate-stick experiment

As our last validation of the multi-material scheme, we consider the rate-stick experiment where
a ‘stick” of HE of length 36 cm, width 1.2 cm, is initially placed in an inert medium surrounding
the stick at z and y thicknesses of 0.4 cm and 2.4 cm, respectively. In [1], Aslam and Bdzil
computed this rate-stick experiment using Amrita, an adaptive grid algorithm for computational
shock dynamics [55]. Fig. 5.8 depicts the initial setup of the experiment where density, extent of

reaction, and pressure fields are shown. A complete detail of the start-up problem are summarized
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Figure 5.8: Schematic of rate-stick experiment in [1].

HE HE (Booster) Inert
Density (kg/m?) 2000 2000 1465
Pressure (Pa) 10° 100 x10? 10°
0% 3 3 1.4

A 0 0 0

Table 5.6: Running parameter of rate-stick experiment of Ref. [1].

in Table 5.5.5. We note that a pocket of high-pressured HE of dimension 2.4 by 2.4 cm initiates a
steady detonation wave in the y direction and the hot gas pushes the HE-Inert interface outward
in the z direction. The rate law used in the HE is also based on the ABS model [2], which is stated

here again:

A = AH(p")(1-)\.

With A = 2.5 x 10%sec™!, the reaction zone length of 4 mm is observed while v = 0.5, and the
threshold pressure p* = 10? Pa is used in the Heaviside function H(p) to prevent any unwanted
pre-ignition events from happening in the unreacted HE. The interface between HE and the inert

(HE-Inert) is described by a level-set curve represented by

¢ = min(b— z,y — a), (5.43)

where constants a and b are 1.2 cm and 2.4 cm, respectively.
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Depicted in Fig. 5.9 is the comparison of two calculated results of rate-stick; left figures are from
Aslam et al. [1] while on the right, the result of this work is shown. Aslam’s results were computed
based on the adaptive grids, which give Az = Ay = 0.0074 ¢m or 54 points in the complete
reaction zone of thickness 4 mm. The results in the right column are based on the uniform mesh
of size 0.027 cm, allowing 15 points across the reaction zone. In both fields of A and p, we see an
excellent agreement of the detonation front and the angle of shock transmitted in the inert. On top
of geometric shape comparison, we have also matched the steady detonation speed of 0.69 cm/us
with the speed obtained from the reference calculation of [1].

Even at the coarse grid resolution (i.e. approximately 1/4th of that in Ref. [1]), our multi-
material numerics are accurately reproducing the fine-grid results of Aslam. Next, we attempt to
simulate multi-material problems of higher complexity, namely interaction between HE and metals.
In the following section, we will describe the applications to which our new code has been applied

where analytical solution (or experimentally validating data) are not available.

5.6 Applications

5.6.1 HE-Cu—Void (a “challenging” rate-stick) problem

The interface treatment technique as discussed earlier in the thesis is concerned with material—
void or material-vacuum contact. We extend this approach to incorporate the generic material—
material interface with a simple use of level sets. By tracking two different interfaces, namely a
contact between a high explosive—copper and copper—void, we can use the unified fluid—solid code
for complex impact and penetration problems.

A plane steady Chapman—Jouguet (CJ) detonation wave is used as the initial solution at the
bottom of a rate-stick shown in the schematic, Fig. 5.10. Experimental observations on the rate-
stick suggest that the steady, curved detonation wave propagates down the axis more slowly than
a planar detonation. The wave speed varies with the diameter of the stick and also depends on
the type of confinement. To understand the effect of metal confinement in place of the condensed
gas used in the validation rate-stick experiment in the previous section, we use the fluid—solid

hydrodynamic formulation to place a copper layer in contact with HE. With a finite thickness
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(@) A (dx=0.0074 cm) (b) A (dx=0.027 cm)

(C) p (dx=0.0074 cm) (d) p (dx=0.027 cm)

Figure 5.9: Comparison of rate-stick experiment. Shown on the left are extent of reaction and
density from Ref. [1] with Az = Ay = 0.0074 cm or 54 points in the reaction zone. Computed
results on the right column are based on Az = Ay = 0.027 cm or 15 points covering the reaction
zone.
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Figure 5.10: Schematic of a “challenging” rate-stick experiment.

of the copper-band confinement, we can observe the shock angle in the steady propagating wave
system and the constant speed.

Shown in Fig. 5.11 are the transients of initial planar wave developing into a system of steady
propagating detonation. The propagating pressure peak is approximately 60 GPa. The time elapsed

between the frames shown in the figure is approximately 5 usec.
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Figure 5.11: Rate-stick experiment simulated on 100 by 150 grid with 0.5 cm initial thickness of copper plate. Shown are the pressure
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Material property Value

Density 7.85 g/cc
Shear modulus (1) 77.5 GPa
Poisson’s ratio (v) 0.29
Young’s modulus (E) 200 GPa
Yield stress (o,) 1500 MPa
Softening exponent, « 1.17
Hardening exponent, n 22

Melting temperature, 7,, 1777 Kelvin
Reference temperature, 7,, 300 Kelvin

Table 5.7: Material properties of high-strength steel.

5.6.2 Explosive welding

Fig. 5.13 shows a cartoon representing the basic idea of how explosive welding works. Initially
separated by a small gap, one of two metal plates is coated with a layer of high explosive (HE). As
the detonator initiates a planar shock wave, which is transmitted through a layer of copper plate
and further through a steel layer, the two plates come in at a shearing velocity at a sizable fraction
of the detonation speed of 8000 m/s and at a normal velocity of D¢y sin3. Here, [ is the small

angle formed by the closing of initial gap between the plates (see Table 5.6.2 for properties of steel).

To simulate the HE-Copper—Steel contact problem in the welding setting, we modify the initial
setup slightly. First, the two plates are assumed in contact initially. Then, to mimic the resultant
skew contact velocity with its components V), and V., we assume the rectangular hot spot has
velocity V, initially. In this way, the interface between the HE and the copper plate experience both
the shearing and normal velocity just as in the actual experiment shown in Fig. 5.13. Numerical
results are shown in Figs. 5.14 and 5.15. The overlaid lines of the level-set functions on the
pressure and the density figure represent the material interfaces between the metals and HE. Initially
positioned at 1 cm and 1.5 cm, two interfaces have translated downward about 2.5 mm at the
2z = 0 location while the detonation front has reached the z = 3 cm location. Tremendous ringing
is observed in the copper plate when the strong shock wave first penetrates and becomes weaker as
it transmitted through the less-dense steel. Since the plastic yielding occurs at a much lower stress
state in copper, the hardening behavior (seen with perturbations or ‘ringings’) is very pronounced in

the copper layer. Although the unstable shearing motions are not easily observable in the copper—
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Figure 5.13: Schematic of explosive welding of two metal plates.

steel interface, this slip line can start the Kelvin-Helmholtz instability, resulting in rolling up of
the contact lines. In Chapter 4, we considered the shear-induced melting of two plates in contact
(see Fig. 4.9). The liquid interface between the plates became unstable as the plates experienced
a shearing motion. By allowing the copper and steel of the welding simulation to undergo phase
transformations, we can melt the interface and further observe a coherent wavy structure as the

unstable interface starts to roll up as shown in the shear-induced melting of Chapter 4.

5.6.3 Penetration of copper plate target by spherical detonation

First the initial shape and location of two material interfaces are prescribed by a single distance

function for each interface:

¢ = lecm—=x

¢2 = (1 cm+ width) —z

where the distance from the left inlet to a first interface is assigned a distance 1 ¢m, and the width
is set 0.5 cm of the initial copper plate thickness. As the hot spot initiates a spherical detonation
wave in a radial direction, chemical reaction instantly consumes the fuel (A = 0) and a thin (in a
continuum sense) reaction front is coupled to a shock approaching the first interface between the

HE—-Copper. As the shock penetrates the copper, we see an incipient plastic deformation in the
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Figure 5.14: Explosive welding of copper (8.93g/cc) and high-strength steel (7.85g/cc). Shown are
the extent of reaction and the pressure (Pa). Simulated on a 150 by 100 grid.
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Figure 5.16: Schematic of copper plate penetration by a point source (detonation).

metal through Fig. 5.17. The highest effective plastic strains are observed where extreme bending
occurs right at the center and the upper and lower ends. Since the second interface between the
copper and a void is modeled by a free-moving piston, we expect the entrapment of waves between
these two interfaces, resulting in a rich wave interaction in the metal layer.

Fig. 5.18 shows the pressure contours of spherical detonation wave penetrating into the first
copper interface and pushing out the second interface. The first snapshot taken at ¢ = 1.02 usec
shows a complex wave structure at the interface, where reflections of the incident waves are clearly
observed. As the incident spherical wave reaches the second interface, a translational motion of the
free boundary is seen from the ¢t = 2.77 usec figure, where part of the incident shock is reflecting
back toward the first interface. As the process of plastic deformation takes place inside the copper
layer, the deformed shape of the plate suggests that the pressure distribution plays an important
role in the changing the shape of the metal layer. The reflecting shocks off the upper and lower walls
of the domain cause the two ends of the plate to start bending as in the last figure (¢ = 5.23 usec).
This bending of the two ends might suggest a pinching-off mechanism by which a metal of finite
thickness may break open upon a detonation wave.

Fig. 5.19 describes how the initially unreacted HE is completely burnt as the hot product
gas pushes the copper plate in the direction outward. The reflecting boundary on the top and
the bottom of the domain allows for a translational motion of the metal strip. A more realistic

boundary would have been to fix the metal ends while all flows in the field are allowed to leave the
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domain. In any event, the present numerical simulations explain the kind of damage a spherical
detonation wave can do to a metal plate. One may also find regions of a high tensile stress where

an onset of ‘tearing’ may occur, causing the plate to break up in pieces.
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Figure 5.17: Spherical detonation wave (ABS model) initiated at a point source located at (z,y) = (0,0) penetrating the copper plate
target located at 1 cm. The right edge of the plate is at 1.5 cm, where the copper—void interface boundary is enforced. Dynamic
deforming motion of the plate is illustrated through a series of snapshots at different times. Shown are the effective plastic strain field
as calculated on 200 by 600 grid.
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Figure 5.18: Spherical detonation wave (ABS model) initiated at a point source located at (z,y) = (0,0) penetrating the copper plate
target located at 1 cm. The right edge of the plate is at 1.5 cm, where the copper—void interface boundary is enforced. Dynamic
deforming motion of the plate is illustrated through a series of snapshots at different times. Shown are the pressure fields as calculated
on 200 by 600 grid.
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Chapter 6

Conclusions

We have derived a three-dimensional model for a representative energetic materials with two in-
dependent state variables that represent the change of phase from solid to liquid to gas and the
extent of exothermic reaction. The model corrects the errors found in the work of Ruderman [61] so
that the equations are consistent with the combustion theory of binary mixtures while the entropy
principle is satisfied. We have fit the model to HMX, a base-line energetic material, and have
given interpretations of the model relating to classical phase transitions. Also, we have carried out
detailed computations of classical simple motions.

In the second half of the thesis, we have developed a comprehensive numerical frame to compute
multi-material interactions for the same energetic material and such other inerts as copper and an
elastic solid. The numerical methods used in the spatial discretization are ENO schemes with level
sets to treat the sharp material interface. The level sets track the motions of the material-material
or material-void (or vacuum) interfaces so as to minimize any spurious oscillations associated with
the smearing of entropy profiles across a sharp material interface. The high-resolution simulation
tool for the multi-material impact has been carefully validated through a series of one-dimensional
and multi-dimensional tests and has produced both qualitative and quantitative comparisons with
benchmark results.

Possible topics for future research using the present framework of the theory and the numerics
are: (i) micro-explosion of a hydrocarbon fuel droplet, (ii) explosive welding with phase changes, (iii)
ignition of HE in contact with hot-spots and voids, and (iv) miniaturization of energetic materials

and HE devices.
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Appendix A

List of p-dependent functions

F(p)
F'(p)

B ()

Bu ()

Yo ()

Cy (‘P)

[p(e — 1) (¢ —2))?
20(4 — 18p + 260> — 15p° + 3p?)

{

6o(1 — )

0

6(¢p —1)(2—¢)

0

2(psot — piiq) P> — 3(phsot — fhiiq) P> + Hsol
2(piqg) (9 = 1)° = 3(puig) (¢ — 1)* + puig
6(Ltsor — fiig) P> — 6(ftsor — Hiig) P
6(piq) (¢ — 1)2 = 6(tig)(p — 1)

0
2(-R)(¢ —1)* = 3(—Ru)(¢ — 1)°
0

R,

6(—=Ru)(p = 1)* = 6(=Ru)(¢ — 1)

2(c)(p — 1)° = 3(as) (p — 1)
0

6(as) (9 — 1) — 6(as) (0 — 1)
0

6(—pYe)p” — 6(—pYo)e
6(—pve) (0 — 1)° = 6(—pyp) (9 — 1)
0

156

for0< <1
otherwise
for 1 <9 <2

otherwise

for 0< <1
for 1 < <2
for0<¢p<1
for 1 < <2
otherwise
for1<ep<2
for p <1
for ¢ > 2
for 1< <2

otherwise

for1<p <2
for p <1
for ¢ > 2
for1<p <2

otherwise

for0<p<1
for1<p<2

otherwise



Appendix B

Special Forms of Equations

B.1 Lagrangian equations (in terms of X)

Mass balance:

6/) 8U1 -1 81}1
‘P 14+ 221 i S
ot +p< +8X1> X, 0
Momentum balance:
ovy 0 _ ouq _ ouq = Oui .4 Op 5
o = o {ul<1+ L) = a1+ ) = pRT = (14 b))

8’1)1 8u1 1
s+ 27) -1+ )}

Displacement:
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Energy balance:
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Microforce balance:
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0
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B.2 Eulerian equations (in terms of z;)

Mass balance:

Momentum balance:

ovy ovy 0 -1 dy 2
- i = — — H)T—2v — / —r
p( " + v1 $1> o {,us(l-l-H) us(1+ H) pR W¢< $1>

ov
+(vy + 2Nf)a—£}
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Displacement gradient, H = g}‘{l :

BH _ 61}1
- gt
Energy balance:
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B.3 Conservation in Eulerian framework

Spherically symmetric coordinate

The basic difference is in the divergence operator:

V-u =

V.:Vu =
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Mass balance:
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Momentum balance:
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Microforce balance:
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Level-set function:
0 0 2
5 (p9) + o (ppv,) = —;(p¢vr)

B.4 Euler equations in spherical coordinates
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2
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Appendix C

Structure Analysis of Steady Phase
Transformation Waves

In this chapter, we consider the structure of steady wave system which is admitted by the con-
tinuum equations described earlier in this work. In particular, we compute the shock structures
in pure phases of solid and gas, and the phase front structure of melting/freezing and vaporiza-

tion/condensation.

C.1 Shock structures

In the continuum theory, a shock is interpreted as a thin region, rather than a discontinuity, in which
rapid changes of the flow quantities occur. Two uniform end states of a typical shock are related
through a smooth structure of finite length in microns where the conservation of mass, momentum
and energy is achieved. In this section, we will consider the shock structures of compressible

Navier—Stokes equations, gas-phase HMX equations, and solid-phase HMX equations.

C.1.1 Continuum structure of compressible N-S equations

The shocked state is the unstable equilibrium. The integration of the structure starts from this
point to a stable point on the unshocked state. Fig. C.1 shows the steady shock coordinate where
¢ =2 — Dt,U = u — D so that in this frame, velocities both upstream and downstream are

negative, pointing to the left. Here D is the steady wave speed, directed in the negative ¢ direction
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Figure C.1: Schematic of shock-attached frame.

(i.e. D < 0). The derivatives with respect to x and ¢ now become

ot~ otde dE 0 dx  de
and, in particular, the velocity gradient becomes

ou dU

gz dg

Thus the equations of motions for the ideal gas are as follows:

pU = m, (U =D—-w)

dUu 3 m m

— = — U_ ——RT) —mU — —=RT

dé Ay {m oty Ty }

dar 1 0 1 9 4 v 1 9
— = —q——mRT} + = - = — ——mRT — -

i@ K{'y—lmR 1-1-2mU_oo 3,ufUU§ 7_1mR 2mU

(C.1)

(C.2)

(C.3)

where we have used m = pU and p = pRT. Using the constants standard of air, so that py =

1.95 x 1075 N s/m?, K = 0.0276 W/m K, and R = 287m?/s?K, we can integrate from a shocked

state as shown in Fig. C.2 into an ambient side.
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Figure C.2: Computed shock structure of compressible viscous Euler gas.

164

r 500 |-
25
2
g2 2oF — 400 |-
a
15
L 300 [~
1 1 1 1 1 1
-5E-07 2.5E-07 0 2.5E-07 5E-07 -5E-07 2.5E-07 0 2.5E-07 5E-07
& (m) & (m)
200
400000 |
-300 |-
-400 = 300000 |-
)
B a
"
-500 |-
o
200000 |-
-600 |
100000 |-
700 |-
1 1 1 1 1 1
5E-07 25E-07 0 2.5E-07 5E-07 -5E-07 25E-07 0 2.5E-07 5E-07
& (m) & (m)
6E+08
ol
ol
< g
=) =
o o
-6E+08 |-
2E+09 [~
1.2E+09 [~
1 1 1 1 1 1 1 1
-800 =700 600 500 400 300 200 300 200 500
U=u-D T



C.1.2 Continuum structure of gas-phase HMX equations

When ¢ = 2, the continuum equations for HMX represent a set of condensed gas phase equations.

Expressed in terms of transformed coordinate £, the equations become

dU 3
= = L U4 pRT —mU_ o — p oo RT o C.4
dH 1 4 dU\ 2 dU

= - — H— 5, (= T .
TS K{mcv 3'uf<d§> +pR d§} (C.5)
dT

=~ - @ .
TS (C.6)

As in the case of compressible N-S equations, we fix the far left shocked state and start the
integration toward the positive ¢ direction.

Shown in Fig. C.3 is the computed shock structures of HMX vapor where the phase field
variable is stationary at a value of 2. Based on the constants of HMX properties, the resulting
shock thickness is about 4 mm, a thickness much thicker than the ideal gas structure thickness of

0.5 pm.

C.1.3 Continuum structure of solid-phase HMX equations

In this exercise, we consider a shock in solid, namely non-reacting HMX solid whose phase is fixed

(ﬁ) 2, /(1—2v5) ~ <£) —2
Po Po

at ¢ = 0. The governing equations as follows:

dU 3 p )
— = —mU+u, |+
T g { a <po

+as;<;pﬁ(T 1) — mU—wo + a_oo} (C.7)
o

dH 1 4 (dU\? p..dU

L e H— oy (& Ll .
dé K{mC” 3“f<d§> T dé} €9
T

& _ H .
- (©9)

Having fixed the far left end state, the integration starts from negative to positive in € to obtain
the stable equilibrium at the far right.

In Fig. C.4, we see a solid shock structure in the HMX where the observed thickness is on the
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order of 1 ym. The stress as shown in the figure is the equilibrium stress comprised of the Blatz-Ko
elastic part and the thermal softening part.

As we have obtained the shock structures of the HMX equations of the earlier chapters, the
limiting forms at solid or gas are consistent with the classical equations of motions which genuinely

admit structures of shocks as found in the solid or gas phase of materials.

C.2 Structure of phase front

Two uniform end states of a typical phase front are related through a smooth structure of finite
length in microns where the conservation of mass, momentum and energy is achieved. Resem-
bling the structure of a classical shock wave of gas dynamics, evaporation/condensation front and
melting/freezing front are carefully studied by considering their structures in the special case of a
transition between two uniform states. An estimated thickness of evaporation/condensation front
of n-heptane is on the order of 107! micron while the HMX melting/freezing front thickness is seen

to be on the order of 1 micron.

C.2.1 Continuum structure of evaporation/condensation front

The details of shock profile between the end states at 00 are provided by transforming the unsteady
equations into the steady flow equations in a frame of reference moving with the shock using
& =z — Dt,U =u— D. Here D is the steady wave speed, directed in the negative ¢ direction (i.e.

D < 0). The derivatives with respect to  and ¢ now become

ot otd¢ ¢’ 0z d¢
and, in particular, the velocity gradient becomes

ou dU

dc — dg

Thus the mass and momentum equations transform as follows:
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Figure C.4: Computed shock structure of solid-phase HMX.
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and

gdvo _ A 4 dU
PPge = ae 31 ae

Since we are interested in the shock structure, we integrate the momentum equation once with

respect to £ to arrive at a first-order ODE in the form

4 dU

mU—a—gufd—g = f

where [ is a constant of integration which can be evaluated at £ — —oo. As for the energy and
phase-field structure equations, the partials with respect to x and ¢ are replaced with the derivative
in &, and the total derivative ¢ transforms to U % where ¢ is either 7" or .

In summary, the structure equations for evaporation phenomena are derived, and they are

described as follows. With mass flux defined constant, m, the structure momentum equation reads

dUu

3 2
—_— = — U+p+ —mUy — 1
¢ I, {m P+ puypGT — mUy, pk} (C.10)

In order to write the energy equation with the highest derivative in a first-order, a new variable H

1s introduced such that

dH 1 4 (dU\® dU Q
@ - 2 H-Zu (& ™ _B 2 orB (p) 2
& - {mcv gl <d§> +pR TS o(UG)* — pTB,(p) T, UG
b L
+pc,T lanT + ,Bv(go)Qk} (C.11)
k

where H is defined

dr

w = (C.12)

and the index k equals one in the evaporation case and two in the condensation case. As for the
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phase equation, we also introduce a variable G such that

e T-T,

Y Ly oo — Do — 20} 4+ 8
E = VB Yl - D= D)+
—d (T lnZ — (T - Tk))} (C-13)
Tk
with G defined as
de _ G (C.14)

dg

Note that we have allowed the dependence of ¢,, R, and £, on the phase field variable . This
generalization of phase dependent coefficients brings in an added complexity to the equations with
their derivatives becoming non zero. Our choice of ¢-dependent coeflicients conforms the structure

of evaporation wave. In other words, we introduce the ¢-dependence in the form of

alp) = %[al{tanh((p*_(’0)+1}+Oz2{tanh((’0_(p*)+1}]

€ €

whose derivative with respect to ¢ is

1 — 1 *—
d(p) = —agsech? LA — o sech? v -9
2e € 2¢ €

Here, a can be any of ¢,, ¢,, By, fm, or R with appropriate end states specified. ¢* is (3++/3)/3 for
vaporization/condensation and (3 — v/3)/3 for melting/freezing. With e chosen appropriately, the
resulting transport function works like a switch between the two end state values. With these switch
functions, we can proceed to solve the governing equations, once we specify all other parameters
relating the properties of n-heptane as listed in Table C.1.

Integrating these autonomous ODEs, we use a high-order low-storage semi-implicit Runge—

Kutta scheme [84], [77], [78], [67] to march in &. In the case of evaporation, in particular, we fix
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Property Value

awd 2.136 x 103 J/kg K
ey 2.136 x 10! J/kg K
Rliquid 3.0 J/kg K

Rvapor 3.0 x 102 J/kg K

I f —liquid 5.4 x 107 kg/m s
K f—vapor 5.4 x 1074 kg/m S
B, 3.5 x 1072

Py 2.0 x 10712

v 40.0 x 1076
Tvaporization 371.4K

Table C.1: Dimensional parameters for n—heptane evaporation/condensation [56], [72].

the liquid state at kK = 1 (i.e. £ = —o0) with the following set of quantities.

p1 = 675 kg/m’

m = 0.7315515 kg/m?s
D =1.08378 x 1072 m/s
u; =0m/s

T, = 300 K § = —00
p1 = 6.07500 x 10° Pa
@1 = 1.0000001
H=G=0

Q1= +3.35x10%J

We start our numerical integration from state 1 (liquid side) at —oo to state 2 (gas side) at +oc.
Fig. C.5 represents the structure of an evaporation wave admitted by the equations. As the initial
state is perturbed, the solution of the structure equation is described by the integration path,
going through a particular structure-stable point on the far right side. The velocity profile is such
that initial 1073 m/s jumps to 10~! m/s at a stable state where the corresponding density jump
is that of a typical n-heptane evaporation [66], [41], [21], [57], [59], [63], [65]. As the phase-field
changes from 1 to 2, the representative thickness of a phase front is observed to be on the order
of tenth of a micron. Considering an experimentally measured thickness of a shock in helium on

the orders of millimeters [71], the suggested evaporation front thickness is much smaller, yet lying
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Figure C.5: Evaporation wave structure based on the transformed velocity, density, phase, temper-
ature gradient field of n-heptane.

significantly within the range of length scale at which the continuum approximation holds. The
temperature gradient as seen on Fig. C.5 at each end is uniform such that T'(—oo) is a constant
and T'(400) is linear with respect to &, representing a far-field constant thermal-gradient condition
for an evaporation process [76], [66].

In the case of condensation, the vapor state-2 is fixed at —oo, and we integrate into the liquid
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side at +o00. The initial conditions of integration for condensation is listed below:

p2 =5 kg/m’

Uy = 0.11 m/s

m = 0.7315515 kg/m’s
T, =480 K {=—o0
@y = 1.9999991
H=G=0

Qy = —4.35 x 10'* J

Here, we essentially reverse the integration from the fixed state at £ = 2 to a new state at 1. Fig.
C.6 represents the structure of a condensation wave admitted by the equations described with fixing
k = 2. The structure is nearly identical to that of evaporation, except the direction of integration
is reversed. With a proper value assigned to a heat of condensation, (), we integrate the ODE
from a vapor side into a liquid zone through a thin region of 10~! micron. The velocity field and
the corresponding density in Fig. C.6 resembles a typical observation of fuel-droplet condensation;
in particular, the end state density is about 675 kg/ m3, prototypical of a hydrocarbon liquid fuel
[41], [72]. While the reverse heat is added to drive the vapor state back to a liquid, the far end
state temperature gradients remain uniform, such that T'(—oc) is constant and T'(4+oc) is linearly

decreasing with respect to .

C.2.2 Continuum structure of melting/freezing front

The structure equations, in the case of solid to liquid or liquid to solid transition, are obtained in
an analogous way as in the evaporation/condensation case of previous section. Major distinction in
terms of equations arises due to the fact that there now is an additional dependence of conservative
variables on the deformation field. A variable, F', is the one-dimensional deformation gradient which
is introduced into momentum, energy, and phase-field equations. Again with mass flux remaining

a constant, m, the momentum structure equation, after integrated from —oo to some position in &,
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Figure C.6: Condensation wave structure based on the transformed velocity, deunsity, phase, tem-
perature gradient field of n-heptane.
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becomes

w3

1
— = mU + p + pp,G? — pgF + pF~ 2 —mUk—pk} C.15
d¢ 4y, { v (C.15)

Here, basically two additional terms of elasticity appears as a deformation stress term inside the
bracket modeling the total Cauchy stress of a material under phase transition. The equation

represents melting if £ = 1 or freezing if £ = 2. The energy equation reads

dH 1 4 [dU\? U dU L dU
> _ = H-— = . — F— F1-2vs
&€ H{mc” 3“f<d§> PR g el gg T e
2 N T
~By(UG)” = pTBy () 7~ UG+ch1n—+B (0)Qk
1 'FYF? - 1)(UG) - 1 s 'F*l(F‘—l—zv - 1)(UG) (C.16)
2“5 Vs My s .

where, like in the evaporation/condensation case, a new variable, H was introduced to split the

original energy equation into a set of two first-order ODEs with

dr
-~ = H C.17
i (€17)
Likewise, the phase field equation reads
dG 1 1_0 T-T,
- = UB,G + -V — — 1) (¢ — 2))? ! ™ Om
T = VB G {lele ~ D= 2P+ A0 T
T 1
(Tl — (T = Ty)) + pha P (F2 = 1)
Ty 2
1-2 S _ _£¥s
+147 Vs pt(p T 1)} (C.18)
25
with
dy
- G C.19
T = (C.19)

making a set of first-order ODEs for structure analysis. Lastly, we need to close the system with

additional equation which relates the deformation gradient field with the velocity field via the

175



Property Value

csolid 1.06 x 10° J/kg K
cauid 2.1 x 10® J/kg K
Rsotid 1.1 J/kg K

Riiquid 3.0J/kg K

I f—solid 1.0 x 1073 kg/m s
Kf—tliquid 1.0 x 1073 kg/m S
B, 3.5 x 1072

fep 2.0 x 10712

v 40.0 x 1076
Trnelting 558.0 K

Table C.2: Dimensional parameters for HMX melting/freezing

identity
dF F dU
—_— = ——— C.20
dé Uy dé (C.20)
or
U
F = ¢t (C.21)

We choose HMX as the candidate for the phase structure analysis for which a significant amount
of material data is compiled a priori [10], [24], [54], [60], [70], [86], [88]. Table C.2 quantifies several
parameters of HMX in the calculation of structure equations of melting and freezing. Again, we
use the high-order low-storage Runge-Kutta method to solve the system of non-linear ODEs. In

the case of melting, we are fixing the solid state of HMX and setting £k = 1 at ¢ = —oo with the
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following set of initial data:

p1 = 2000 kg/m*
m = 2.0 x 10 kg/m?s

D =1.0m/s
up =0 m/s
T, =300 K

p1 = 6.07500 x 10° Pa
¢1 = 0.0000001

F = 1.00000001
H=G=0

Q1 =+33x10"J

It must be mentioned here that, since there are no reported sets of data for the rate of melting for the
highly explosive HMX, we simply select a value of D in the range of 102 to 10*> m/s. The minimum
in this range corresponds to a typical deflagration speed while the maximum represents a typical
detonation speed [29], [76], [68], [39]. A natural choice is to take the mean value, approximately
1m/s. Fig. C.7 depicts the structure of a melting front admitted by the equations addressed in this
section. In particular, the initial density of 2000 kg/m3, typical of solid explosive such as HMX,
decreases by a factor of two. The system of ODE of melting is integrated from a slightly perturbed
initial state into a new state representative of melt HMX. The thickness of the phase front is on
the order of microns, supporting the observation that explosive melting front is approximately ten
times thicker than the evaporation/condensation front of liquid fuel. There is also a new property
that rapidly changes across the melting fronts in the phase transition of a non-linearly elastic solid.
Fig. C.7 shows the deformation gradient field across the melting front of HMX in particular, the
initial state of solid is essentially unstressed (i.e. F = 1) while the end state of the integration
is at a compression state with ¥ ~ 0.3. In fact, the wave, a compression wave, on the far right
side, propagate into an unstressed material on the left side at a steady melting speed of D. This
observation is consistent with the principles of energy transfer from a higher state to a lower state.

The temperature field as shown from Fig. C.7 also supports this observation that uniform state
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Figure C.7: Melting front structure observed from the transformed velocity, deunsity, deformation
gradient, and phase field of solid HMX.

on the left is balanced by a linearly increasing thermal field on the far right, causing the energy
transfer to go from liquid to solid, essentially a melting process by definition [58], [53], [18], [54].
In the case of freezing, the liquid state-2 is fixed at —oo, and the integration starts from the far

left in the liquid region to a position in the solid at +oco. Listed below are the initial conditions of
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integration of which the liquid state is assumed uniform:

p2 = 1580 kg/m®

Uy =14 m/s

m = 2.0 x 10° kg/m?s
T =700 K

w2 = 0.99999991

F' = 1.00000001
H=G=0

Qr = —42x10"J

Fig. C.8 represents the structure of a freezing front, admitted by the equations described in this
section with setting £ = 2. Previous investigation of thermodynamic properties of HMX suggests
that the material can undergo a liquid-solid transition at a temperature 550 K and a pressure above
50 x10° Pa. So the process of ‘freezing’, in principle, is realizable at this melting temperature with
an elevated pressure of 50 x10° Pa or above. typical melt explosive density of 10° kg/ m® makes a
rapid transition to a new state, a solid state as shown in Fig. C.8 of density structure. Again, the
thickness of numerically obtained freezing front is in the order of microns, which is about ten times
the thickness of condensation front of hydrocarbon liquid fuel. As the phase field changes from 1 to
0, the deformation field as depicted in Fig. C.8 goes from an unstressed liquid at F/(—o0) = 1 to a
tensional state at F'(+00) = 1.3. The front again moves from right to left with a steady propagating
speed of D = 1.26 m/s. The temperature gradient field, shown from Fig. C.8, also describes the
uniform states at both ends, making the T field uniform at —oo and linearly decreasing at +oco

suggesting a release of heat upon the process of freezing.

C.3 Algebraic theory

C.3.1 Derivation of Rankine-Hugoniot relations

In the previous section, we have derived a set of equations which describes the structure of phase

shock as one state is perturbed to make a smooth transition into another structure-stable state. In
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Figure C.8: Freezing front structure observed from the transformed velocity, density, deformation
gradient, phase temperature gradient, and temperature field of liquid-HMX.
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this section, we will look, in a more elaborate fashion, at the two end states of a shock, a phase
shock, and arrive at a new algebraic theory of phase transition which possesses many similitude to
that of a classical R-H theory of shock wave [75], [T1], [40].

Integrating the steady mass and momentum equations of previous section with respect to x

from —oc to +00, we have

plUL = pPouo (C.22)
and
plu% +o1 = pzu% + 09
where the total stress term is
o = —pRT —pp, <g—i)2 + gﬂf% + s F — pu (F) 75

Now we assume a constant deformation gradient and zero gradient for all other variables at two

end states, such that

dp Ou dp Ou
(at — o0) %—%—O,F—l and (at + o0) Bx_ax_O’F_C

and that the difference between two lame parameters, pus; — p; is zero at two end states. Then, the
resulting relation for momentum conservation states

plu% +p1 = pzu% + po (0.23)

which is identical to the R—H relation for shock wave [75].
For the energy relation, we convert our evolution equation for 71" into a total energy form. First,

the internal energy equation reads

. g, 0T ou
pe = %(K%)—FU%—FG(p,U,T,(p,F)
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where

_ 8_‘702 / Q_ma_‘p la,us -1 2 ; 1—21/5% _1 e .
G = BoUGEY +mTB(p) ™ o + 50 ()7 (B = 1) o = = G ()7 (58 1) ¢

By multiplying the momentum equation by u results in a mechanical energy equation:

w _ 0o
p2_u8x

Summing up these two equations, we obtain the total energy equation

p(é+<%2>) = %(HZ—Z)—F%(UU)—FG

Now assuming steady-state, we can integrate the total energy equation with respect to x from —oo

to 400 giving the jump relation

= ou|i°oo+/ Gdz+C

o

o
4,9 +/ Gdz +C
—0 —00

= (-p+ gﬂf%)u

where we have assumed constant temperature gradient and deformation gradient at farfield and

zero gradient for all other variables at two end states, such that

or  Jy  Jdu orT Jdp  Ou A
t — —=—=—=0F=1 d (at —=0C—=—=06F=C
(at — o) or Oz Ox ' and  (at + o) Ox "Oxr Oz ’
and that the difference between the two Lame parameters, pg— g is zero at two end states. Dividing

by m, we find that energy jump becomes

And using the definition of enthalpy, h = e+ p/p, we obtain the desired expression for the enthalpy
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evolution equation as

2 2 1 o C
h1—i—ﬂ = h2+k__/ G(p,u,T, ¢, F)dx — —
2 2 mJ_ m

C.3.2 Algebraic theory of phase transition wave

The Rankine-Hugoniot relations for general phase transition can be summarized in the following

form:

Ui = pUs = m (C.24)

/01U12 +p1 = p2U22 + p2 (0.25)
U? U?

CplTl + 71 = CPQTQ + 72 +Q (C26)

If the two end states are representing liquid and vapor states, () plays essentially a role of heat of

evaporation or condensation, and it is uniquely defined for our model by

e 0 0,0 c
AT = [ {05 mra 2 5 de- £

m —00
with

, 6(p—1)(2—¢) fl1<p<2
Bule) =
0 otherwise
where () > 0 represents evaporation and ) < 0 represents condensation.
In the case of the melting/freezing process, ) involves two additional terms from the theory of

linear elasticity. Basically, @), in the solid to liquid or liquid to solid transition, depends also on

deformation gradient F', and it reads

_ L 99, ! () 9m 9%

AT F) = o [ B SER +m 0 2 S
18/,65 1 2 . 1-— 21/5 (9,uc 1 ,EL _ . _ g
+2 Oy () ((F) 1) vt 2us Oy (F) (F b 1) Py m
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with

(o) = 6p(1—¢p) f0<p<1
0 otherwise
where @Q > 0 is for melting and @ < 0 is for freezing. These jump relations are identical to a
classical shock relations in the theory of gas dynamics, except that we have added an enthalpy
change due to phase transformation. One objective of the derivation of algebraic theory for our
full continuum model, has to do with determining Uy, Us, and po. What follows is thus specifically
aimed at solving the algebraic relations for those unknowns.

First the ideal equation of state (EOS) and the definition of U are substituted into the RH-

relations (C.24-C.26), resulting in the following:

piD = po(D —uy)

p1D* + piRiTy = pa(D —uz)? + poRoTo
D? D — uy)?
cpiy + -5 = cp2ls + % +Q

Using specific volume, v = 1/p, to rewrite the continuity, we have

mug = D — ug,

and momentum and energy equation become

2, 2 R T,

mvy = m2vyvg + o vg — RoTh (C.27)
2,2 2

mav D
2 2 = CplTl — Cp2T2 — Q + 2 (C28)

Substituting m2v3 from (C.27) into (C.28), we can express v3 as a function only of one unknown,

DZ

Ty — cpoTy — Q+ 22 + LR,T
vy = Cp1l1l — Cp212 Q 2 g lv2d2 (C29)

RiT,
%(m2v1 + 5 L)
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Then, we use this expression for vy in (C.28) to arrive at a single quadratic equation for D? = ¢ as

a function of all known quantities:

$*(2a + 2T) + ¢p(4a? + 4ol + T2 + 2T R Ty) — 2a(RiT1)? = 0O (C.30)

For convenience, we have introduced two new variables in (C.30), namely,

I' = RQTQ—RlTl

o = cp]_T]_ — Cp2T2 - Q

The quadratic relation admits two possible solutions, such that

b+ V2 4
pr = = 2(; ac (C.31)

where

a = 2a+T)
b = 4o’ +4al +T2% + 2TRT}

c = —20&(R1T1)2
Once D? is determined, the specific volume of gas, vo, can be obtained through

2
vi = vl <1 + D_a2) (C.32)

and the gas velocity is further determined by

ug = D <1 = ”—2> (C.33)

U1

Both (C.31) and (C.32) are subject to constraints, namely, D* > 0 and v5 > 0. First, the
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quantity within the square root must be positive definite such that the inequality
(20 +T)%(4a® + 4ol + (T + 2R T1)?) > 0 (C.34)

holds for all a,T', and R\7). Assuming the constraint b — 4ac > 0 is satisfied, we consider the

condition

—b+/Q
2a

where Q is b®> — 4ac. In terms of o and I, this inequality becomes

—T? —2TR Ty £ VQ
— 0 C.35
at i(a+T) > (C.35)

As it turns out, only the positive square root (i.e. the sign in front of the square root operator)
fulfills this inequality, and the allowed region on the I' vs. « plot are drawn in Fig. C.9. In both
cases with setting R17T7 = 900, upper and lower left quadrants on the o —I' plane represent a region
of unacceptable solutions of D?. Upper right quadrant represent possible solutions of evaporation
in Fig. C.9a and possible solutions of melting in Fig. C.9b. Likewise, the condensation and freezing
solutions, as constrained by the inequality, are bound to lie in the lower right quadrant in Figs.
C.9a and C.9b, respectively.

The third inequality emerges from (C.32). Unlike the previous two constraints imposed by
(C.31), this one simply places an lower bound on the variable a which essentially quantifies the net

enthalpy change in the system. That is,
1)
o > —§D (036)

C.3.3 Solution of algebraic theory

So far, we have derived a general theory of jump relations between the two uniform conditions
across a phase shock. By specifying the knows of the system, we can determine the phase front

propagating speed, D, the density jump, Ap, and the velocity jump, Awu of phase shock wave. For
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Figure C.9: (a) Plot of (—b + Vvb?> —4ac)/2a as a function of o and I' in the case of n-heptane
evaporation/condensation. (b) Plot of (—b+ vb? — 4ac)/2a as a function of @ and I' in the case of
HMX melting/freezing.

example, we consider the case of evaporation where the fixed state is described as follows:

p1 = 675 kg/m”
Q = 320,000 J/kg
up =0 m/s
cp2 = 321.36 J/kg K
cp1 =2139 J/kg K p §=—© { = oo

T, = 1001.0578 K
T; = 300 K

p2 = 607499.9344 Pa |

p1 = 607500 Pa

Then (C.31), (C.32), and (C.33) can be solved for the unknowns, namely, D, py, and ug. One

possible solution reveals that

D = 0.00108378 m/s (C.37)
pr = 2.02286 kg/m? (C.38)
uy = 0.361642 m/s (C.39)

Promisingly, these results are quantitatively consistent with those of the end state prediction by

the evaporation shock structure analysis in the previous section. In particular, the steady rate of

187



evaporation, D, is approximately 1 mm/sec which is consistent with the experimentally observed
n-heptane regression rate in the droplet ignition [41]. Of course, the surprisingly good agreement
between the algebraic theory and the experiment was mainly possible because of the parameter, Q)

in the model which acts as a ‘tuning’ device for producing a desired end state solution.
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Appendix D

Thermodynamics of Energetic
Materials

In this chapter, we describe how a P-V-T diagram of HMX is constructed. Based on a semi-
empirically generated P—V-T' diagram, we will be able to characterize the melting and vaporization
of HMX upon thermomechanical loadings. Furthermore, we will explain the hydrostatic pressure

of HMX, whose distinct expressions at each of three phases are properly understood.

D.1 Constructing a P-V-T diagram of HMX

Study of high explosives (HE) is a challenging subject not only because of the underlying rich
behavior of an initially solid material undergoing phase transformation to a detonated gas, but also
because of the scarcity of the available chemico-thermo data available in wide range of pressure
and temperature. We choose to analyze the mechanical and thermodynamic behavior of HMX,
whose reported experimental data are reasonably easy to find in many places. For the purpose of
our interrogation of HMX, material properties are reported in the Table 3.1, We based these values
from the references [10], [24], [70], [60], [85], [69], [47], [4]

Pressure-volume-temperature (P-V-T') surfaces of HMX has not been constructed based on
any empirical attempt due to the reason mentioned earlier. In our work, we were motivated to
look into how the classical theory of thermomechanical phase transition can predict the properties
of this explosive in the situations where there are no known data. At this time, we take the
fundamental approach in predicting the melting/freezing regime and the vaporization/condensation

regime via the Clausius—Clapeyron relations and some of the empirical relations like the Kraut—
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Kennedy melting law [54]. As for the sublimation region, several experimentalists of late 60’s and
70’s have measured the log of vapor pressure versus the reciprocal of temperature. In particular,
Rosen and Dickinson [60] obtained the following pressure relation in pascals for the HMX in the

temperature range of 370 ~ 402.3 K:

9154
logp(T) = 16.18 — —— (D.1)

As for the range of 461 ~ 486 Kelvin, Taylor and Crookes [70] suggest using the following log

relationship between p and 1" at phase equilibrium:

8296
logp(T) = 14.732 — = (D.2)

We note here that the original relations were written down in mm Hg (or Torr), and thus we have
made the unit conversion for pressure, such as 1 mm Hg = 1 torr = 1.333 x 102 Pa.

With a measured triple point of HMX at (7,,p,) = (558 K,50Pa), we perform a one-sided
extrapolation from the curve of Taylor and Crookes which ends at a temperature of 486 Kelvin.
Thus the points on the resulting curve cover all possible thermodynamic states in which both solid
and vapor phase can coexist. Based on both empirical data available and theoretical arguments
made on the basis of Gibbs free energy, we can draw a phase diagram as in Fig. D.1, which depicts
all three states of HMX with phase-equilibrium curves of solid-liquid and liquid-vapor constructed
from the semi-empirical relations. Dividing the solid-liquid phases, we use the well-known Kraut—

Kennedy melt curve, which takes the form
Tin(p) = To+bp (D.3)

where the empirical coefficient, b = 58 K/GPa, and p,T' in pascals and Kelvin, respectively. As
for the vaporization curve on P-T' plane, we use the classical argument based on the Clausius-

Clapeyron relation that change in chemical potential energy is negligible across the phase boundary.
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This invokes the following general expression for liquid-vapor phase transition curve,

—1
T,(p) = (% lnp%JrTio) (D.4)

with temperature in Kelvin and pressure in pascals. The gas constant R and the heat of vaporization

Q, corresponds to values for HMX.

semi-€
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(558 K, 50 Pa)

a
<
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10-3 1 1 1 1 1 1 1 1
300 400 500 600 700 800 900 1000 1100 1200
Temperature (K)

Figure D.1: Sublimation curve drawn based upon the empirical data of Rosen & Dickinson [60] and
Taylor & Crookes [70]. Melt curve is estimated by semi-empirical Kraut-Kennedy law. Vapor curve
is drawn from equilibrium thermodynamics using the Clausius—Clapeyron relation for idealized -
HMX vapor.

In the forthcoming sections, we will elaborate on the constructing of these phase boundaries
based on thermodynamic and empirical data. According to these expressions, melt and vaporization
temperatures are explicitly dependent on corresponding melt and vaporization pressure. However,
in most of our simulations, we assume that 7, and T}, are independent of pressure, just for sake of

simplicity. In the future, we can replace the melting and vaporization curve with those discussed
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in detail in the forthcoming sections.

D.2 Equation of state (EOS)

D.2.1 Experimental isothermal data for solid HMX

In 1978, Bedrov et al. [4] measured hydrostatic stress of HMX by suspending small crystals in a
methanol-ethanol medium and then placing the sample in a Bridgman anvil. Recently, Yoo and
Cynn [85] made use of diamond-anvil cell (DAC) technologies to achieve hydrostatic compression of
B-HMX at high pressures and temperatures. The sample is prepared from Argon pressure medium
instead, whose bulk modulus (or, stiffness) is about 1.4 GPa, substantially smaller than that of any
hydrocarbon substance at 20 GPa. Since the stiffness of any typical high explosive (HE) is close to
20 GPa, one would expect a lower compressive stress on the HMX sample placed on the Bridgman
anvil cell.

Isothermal data of HMX in a hydrostatic condition using the DAC technique of Yoo et al.
is obtained for pressures up to 43 GPa. In particular, their p—V relations shows a (first-order)
jump in specific volume at about 27 GPa. The well-known - solid phase transition explained
the observation where the volume change (increase) due to transition is about 4%. A best fit was
attempted for the p—V isotherm below this transition pressure of 27 GPa. They used the third-order

Birch-Murnaghan (BM) equation of state, such that
3 _ _ _
p(n) = 5Boln UL =31 = B4 (g - 1)), (D.5)

where n = V/V,, the bulk modulus B, is 12.4 GPa, and its pressure derivative B’ is 10.4. The
pressure is given in GPa.
D.2.2 Jones—Wilkins—Lee equation for vapor HMX

The Jones-Wilkins-Lee (JWL) EOS has been used to describe explosives in applications involving

metal acceleration [24]:

0.3
4.2n

0.3 0.3

_ B o142 A D i .
p(n) = A Je 7+ B(1 77) T+ o Po (D.6)
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where A, B are the linear coefficients with A = 7.783 x 102> GPa and B = 7.071 GPa. Here, E, is
the detonation energy per unit volume and E, = 10.5 GPa-m®/m?. As in the BM EOS, pressure

is given in GPa.

D.2.3 Hydrostatic pressure for our model

In order to simulate high explosive undergoing phase transition from solid, liquid, and vapor, to
reacted product, we need to develop an equation of state that can effectively represent all phases of
material in an accurate fashion. As we have previously discussed in detail in the thermomechanical
derivation of continuum laws, we have made use of the Blatz—Ko strain-energy density to come up
with the Cauchy stress definition related to elastic deformation of a solid material. In addition, we
have also considered the stress due to the thermal expansion on both solid and liquid of energetic
materials. However, when the material undergoes phase transition to a gaseous state, both de-
formational stress and thermal stress should contribute nothing to the hydrostatic component (or
non-deviatoric part) of the Cauchy stress; instead, we would then model this spherical part of the
stress as an ideal gas with ideal EOS. With proper transfer functions which are explicitly dependent
on the phase variable, ¢, EOS of the energetic material as reflected through our continuum model
is capable of representing all phases of a material from solid, liquid, vapor, and to reacted product
gas.

The hydrostatic pressure of our model can be described by an isotropic compression on a

material. In terms of the components of stress tensors

1
p= _g(arr + 099 + T4¢)s

theCauchy stress, as defined in the Eulerian description of the model, consists of two terms, namely
the equilibrium part and the dissipative part. This equilibrium part of the stress can be further
divided into a spherical part and a trace-less part or a deviatoric part. This spherical part of the
stress is what we consider a pressure in our model [12], [3], and it basically represents a mean

h _ €q

average of diagonal components of equilibrium stress, or simply stated, o*?" = %ai.

_ 1 eq
i = ztro™.
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Starting from the equilibrium stress tensor, we recall that

o = ,usﬁB — usﬁﬂlgl_”s 1—pRT1- ﬁcm(T —To)1 = py,Ve ® Vo

o Po Po

Now, we may write this expression in terms of spherical and deviatoric part such that

ot = o,sph+o,dev

o 1 1
= <_N5£IH31‘2”S — pRT — ﬁom(T —T,) + usﬁ—trB — Yo tr (Ve ® V(p)) 1
IOO po p03 3

1 1
+usp£ (B - gtrBl) - M <V<p® Vo — 3t (Vo ® V@ﬂ)
o

Clearly, the deviatoric part of the equilibrium stress has the property, tr 0%’ = 0. So the pressure
can be related to the negative of the spherical part of the equilibrium stress:

__ Vs 1 1
-p = —usﬁﬂIBld"S + ,usﬂ— tr B — pRT — ﬂom‘(T —T5) = pYez tr (Ve ® V)
Po Po 3 Po 3

(D.7)

Limiting forms

Equation D.7 is a generalized form of spherical stress component, representing a ‘press’ of our
model. In a classical sense, the hydro-pressure is a static measure, which does not include any
instantaneous changes in phase. In this spirit, we specialize the expression above to a specific
deformational mapping and distinguish its limiting forms corresponding to ¢ = 0,1 and 2.

We first assume a homogeneous volume compression (expansion) on a material, whose left
Cauchy—Green tensor is given by B = (p,/ p)?/31. Consequently the first invariant of B reads
Iz = tr B = 3(p,/p)??, and the third invariant Tz = det B = (p,/p)?. Under these conditions,

the pressure becomes

S
I
|
=
o
VR
[=
N——
wl

A p
+ ps (,0_> — pRT + —ar(T — T,) (D.8)
o

Po

Po

where 1(¢) = ps() + pu(p) such that 24(0) = frsoiia and zero for all ¢ > 1, and (1) = fuiguia

and y;(0) = (2) = 0. Of course, the gas phase will support neither deformation nor thermal
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expaunsion, such that p = pRT is recovered when ¢ reaches ¢ = 2, the vapor phase.

One- and two-dimensional cases for simulations

Numerical simulations are performed in one and two dimensions. Corresponding expressions for
pressures are discussed here. In one-dimensional deformation, the generalized spherical portion of

the Cauchy stress becomes

_ 1 14 )t 1 (dp\?
p = m(+ )= BT+ Lan(r -1, - UL g 2 gy gt (22
Po 3 3\ Oz
(D.9)
Similarly in the two-dimensional coordinates, the pressure can be expressed as
[ 92 92
p) i 1 (d¢ Iy
= — RT (1 = — D.10
po= (L) ez (5) +(52) (D.10)
1
—guspﬁ[(l+H11)2+(1+H22)2+H122+H221+1] (D.11)
o

As before, we consider the expressions of pressure in a classical sense: limiting forms at each
distinct phases ¢ of 0, 1, and 2 are considered. The pressure, expressed in pascals, in the solid

phase is deduced from assigning ¢ = 0 such that in one-dimension it becomes

1

S S 7S S
p(n) = psam T —%n Yn? +2) +

gk

(T —T,) (D.12)

where p1¢0 and ay are the shear modulus corresponding to the solid phase and expansion coefficient
corresponding to a solid phase. As before, n = V/V,. As for the liquid phase, we allow only the
volumetric change with zero deformation and maintain the thermal expansion of liquid. Further,
one would expect that the liquid-state isotherm should reflect a 4% volume increase upon solid to

liquid phase change, and thus the corresponding form of the pressure in the liquid case becomes,

Mlig 1 gk

3 (n* +2) +

_ 1
p(n) = puign T — (T —T,) (D.13)

where (154 is a modeled liquid shear modulus, and «; is chosen the same as the solid case. When
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@ = 2, we recover the ideal EOS for vapor HE and reacted product, such that

p(n) = % (D.14)

with pressure expressed in pascals.
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Appendix E

Eulerian—Lagrangian Configurations

The continuum laws of energetic materials was derived in the spatial configuration such that the
Cauchy stress tensor is related to the Eulerian variable  as well as the Lagrangian variable X.
A complete listing of governing continuum equations in ‘both’ configurations is desired as it will
provide a foundation for performing a robust numerical simulation of thermomechanical behavior
of HMX under large deformation. The stress response function of a material undergoing a phase

transition from solid to fluid may suggest that

]
P(FX0.0) = pFXDOFE) (Gprp ) +CEEX 0.0

_v¢i(.f(X7t)7t) ® gi(f(Xut)ut)u

where f(X,t) is a deformation that maps a point X in reference configuration into a position

x in spatial configuration. Moreover, the deformation tensor F' is %, the velocity gradi-

ent L is w, and V is the spatial gradient operator %. As we find out, an additional
equation for the displacement gradient H must be solved with the balance laws simultaneously
in the spatial formulation of the problem. In the referential description of continuum laws, it
is the displacement w(X,t) that is determined additionally to the unknowns of calculation (i.e.
p(X,t),v(X, 1), T(X,t), p(X,t), and A\(X,t)). A distinct advantage of formulating the problem
in the Lagrangian context is that the advection terms that arise in the spatial description of the
material time derivative of each material property vanish. Because the computational grid is lit-

erally fixed to the particle, the treatment of the impact-loading boundary is also trivial in the

Lagrangian formulation. In the following sections, continuum laws are revisited and explicitly writ-
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Figure E.1: Lagrangian and Eulerian frames.

ten out in both the Eulerian and the Lagrangian configurations in such a fashion that the resulting
set of equations are suitable for the high-order accurate direct numerical simulation of the HMX

thermochemical behaviors.

E.1 Eulerian description of balance laws

In the following collection of equations, the material time derivative (total derivative) of a physical

material property ¢(X,t) (equivalently, (ES\( f(X,1),t)), will be denoted by $, where

~

b= DD 550 0).0) - VRS 00 (©.1)

As for a vector quantity ¢(X,t), the material time derivative becomes

~

b = PIDD (95X, 0,0)8(7(X. 00 (5:2)

Starting with the balance of mass, we have

p+pV - u(f(X,1),t) = 0 (E.3)
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The linear momentum balance gives
pi = V- o(f(X.1).1) + b(F(X,1),1) (5.4)

where o is the Cauchy stress tensor which is described by the constitutive relations in the following

manner:

o(F(X.0).0) = B, L, 1~ pRT1— py, Vo @ Vo + vp(te D)1+ 204 L

o Po

(E.5)
Combining the momentum balance with this definition for stress, we have

ph = V. {uspﬁB - uspﬁﬂlg(”s/l‘”% — pRT1— py,Vo & Vo + v(tr D)1 + 2qu} +b
o

o

(E.6)

The angular momentum balance implies that
o(f(X.1).t) = o (f(X,1).1) (E.7)
This implies that (E.6) can alternatively be written with D in place of L using the symmetry

property of the Cauchy stress, o. Energy balance is

Th S v+ 22 0)

or "t orT orT

pe, 7 = V - (KVT) + 0% . D—7%¢, +T (—
With constitutive equations properly introduced, the energy equation yields

pe, I = YV« (KVT) +vp(tr D)? +2u;D « D+ Byp? + By\?
, T . T . T ,
{oseorm Lo (B -Qn+ B0 7Q ) o
+pQc — (pRT'1) - D (E.9)
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The phase change equation, after substituting the relations for microforces and microstresses, be-

comes

. ! ! ]. —2 S —Vg —2Ug
Bop = V- (1,99) — ()5 (s = 3) — s ) L2 (IZT = )—1)

2p, 2poVs B
/ T 1 0
+e (@) Tl - (=T = gL () - (e~ 2))
/ T — Tm ! T - Tv
=B () T, Qm — pB,(¢) T, Qu (E.10)

E.1.1 Equation for displacement gradient

The description of balance laws in the spatial configuration as discussed above requires an indepen-
dent determination of the extra unknown, the left Cauchy—Green tensor, B. As we will see in the
balance laws written in the reference configuration, one additionally computes the displacement
u(X,t). Here, however, we can either treat the deformational gradient F' or the displacement gra-
dient H as the extra unknown, and together we can solve the balance laws in a well-posed manner.
The well-known relation between the time derivative of deformation tensor and the spatial variables

(z,t) is used to solve for F', such that

F = LF, or
OF M (f(X,1),1)
- = —— 2 °F E.11
ot ox ( )

Alternatively, we can solve for the displacement gradient by using F = 1+ H, or

OH  93(f(X,1),1)
o = o (1+ H) (E.12)

E.1.2 Displacement gradient based numerical formulation

Equations (E.3), (E.6), (E.9), (E.10), and (E.12) are solved simultaneously via the high-order
accurate and robust numerical schemes. In particular, fourth-order convex ENO schemes are used to
discretize the advection terms and all first derivative terms while the fourth-order central difference
schemes are used to treat the second derivative terms of diffusive nature. Once the system of

equations in the previous section are spatially discretized, the resulting semi-discretized equations
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are solved in a method of line approach. Here, we have chosen to discretize in time via the low-

storage third-order semi-implicit Runge-Kutta (LSSIRK-3) schemes.

E.2 Relations between spatial and referential operators

In order to reformulate balance laws in terms of the Lagrangian variables (X, t), we first convert the
spatial operators, which appear explicitly in the balance laws, into their referential counterparts.
We basically perform the coordinate transformation of (x1,z9, x3,t) —— (X1, X9, X3,t). Starting
from the spatial description of material time derivative, the Lagrangian description is a simple time
derivative such that

99(f(X,1),1)

o +B(F(X,1),1) - VO(F(X,1),8) = 9 (X, 1) (E.13)

ot

As for gradient operators, we have the following relation via chain rule:
Vo(f(X,t),t) = F~Grad¢(X,t) (E.14)

Similarly, when the gradient operates on a vector, the relation becomes

~

Vo(f(X,t),t) = Grade(X,t)F ! (E.15)

Divergence of a vector becomes

9 0 0X, 94
- a’L‘Z N 8Xl 8.@, N 8Xl

V - o(F(X, 1), 1) F;'=Grad¢(X,t) - F~' (E.16)

As it appears in the linear momentum balance, the divergence of a tensor quantity will also be
expressed in the reference configuration. For simplicity, we will use the Cauchy stress tensor
o(f(X,t),t) as an example of some physical tensoral material property under transformation:

_ Joy; o 0o;; 0X},

. X,t),t i= i

(E.17)
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Now, if we multiply the result in (E.17) by the Jacobian J, an expression involving a divergence
of a new tensor quantity called the first Piola—Kirchhoff (PK-1) stress emerges. This new tensor
quantity, which is defined by the product of the Jacobian, the Cauchy stress, and the inverse
deformation tensor, is the engineering stress as recorded from the undeformed coordinate. In other

words, we claim to express (E.17) as

Jaaij 0Xy

% 5. ¢ = Div (Jo(s(x,0,HF ) (E.18)

= Div (X1 (E.19)

where we use the symbol, &, to denote the PK-1 stress. Now, it remains to prove the statement in

(E.18). Expressed in the component notations, the right-hand side of (E.18) is

0 0X; o [ ,0X; 0X;\ doi,
— k") = —(J=2)o; - E.2
an (JU,]C Ba:k ) an (J a$k ) ik + < Ba:k ) an ( 0)

Here, the first term emerging as a result of applying the divergence operator via chain rule is
identically zero due to the theorem of Piola’s identity. 1t basically states that Div (JF_T) =0

thus (E.20) consists only of the last term, such that

B 0X;\ [ ,0X;\ doy
T&(*’”’%) - (JaxJan
801‘]‘ an
—_— E.21
0Xy Oz ( )

with some relabeling of indices 5 and k. This result is identical to what we intended to prove earlier
on the left-hand side of (E.18).

The Laplacian operator, V - (Va(f(X,t),t)), as it appears in the energy conduction term is
transformed next. Recall from (E.14) how the gradient of scalar (}5( f(X,t),t) transformed, and for
simplicity its component notation will be stated here:

9 0X; ¢
8.T,‘ B 8.@, an

(E.22)
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Now, taking the divergence on the above vector quantity, one obtains the following;:

~ 0 ~
V- (V)i = %(Vfﬁ)i
1
O(V): 09X,
BXl 8:1:1
0X, 9 [0X; ¢
8:1:1- 8Xl 8$1 an

(0 (.1 0
- ' (5w {7 o))

(O (.9
Gt )

Thus, the Laplacian of a(f(X, t),t) transforms as

V. (VO(f(X,1),t) = F | .Grad (F*TGrad ¢(X,t)> (E.23)

Furthermore, we will list some of the useful expressions of a velocity gradient as they appear in

numerous parts of the balance laws:

L=Vo(f(X.t),t) = Gradv(X,t)F ! (E.24)
D = % (Grad v(X,t)F~' + (Grad 'v(X,t)F_l)T> (E.25)
trD=trL = tr(Gradv(X,t)F")

= tr {% (Grad v(X,t)F~' + (Grad'v(X,t)F_l)T)} (E.26)

E.3 Lagrangian description of balance laws

The balance of mass, linear momentum, angular momentum, energy, microforces, and reaction

species in (E.3) through (E.12) now take the following forms in the Lagrangian configuration:

Ip(X,1) ov(X,t) 1 _
P (X )T P = 0 (E.27)
pow _ Div &(X,t) + pob(X, 1) (E.28)

203



where the PK-1 stress does not satisfy the stress symmetry by the angular momentum such that

o # . Expressing o in terms of constitutive relations, we have then

o(X,t) = Jo(f(X,t),t)F "

= %{u ppB ;Ls;ﬂ] (vs/1=2v5) 4 —pRT]—p7¢V90®V90+Vf(tID)1+2MfD}F—T
o 0

_ (ve/1-20) | _ —T 9% -1 99
- {HSB ,usﬂI poRT1 PoYe (F 8X> ® (F 8X>

1Py (o (22 p 1+& ® g (90 g Y gt (E.29)
ot X Br\ox X '

Energy balance, under the Lagrangian transformation, becomes

orT - ) oT
pevgy = KF T <8X(F Tax)) +vs(tr D)* +2u¢D - D

0 O\
+B, <a—‘f> 1 By <8t>
dyp

H{seomn g o (Futoig-n+ B07 Q) | 5

)\
+pQey; — (pRTD) - L (E.30)

where D, L, and tr(D) are defined in (E.24) through (E.26). Similarly, the equation of phase

change takes the following form:

0 0 0 /
B = F - (5P 58] ~ i)t -

, 1—2u5) [y /(1-20,) r

_HS((’O)p(QpOVSV ) (ﬂ[ /(12 1) +pc (Tlni —(T-T ))
1 0

25 (@) - Dle - )’
/ T-T, T-T,

B0 Qm — B, ) (E.31)

Finally, the displacement field is determined via solving the following equation

ou(X,t)

S = vX. (E.32)
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E.3.1 Longitudinal problem

For a longitudinal impact problem, the generalized Lagrangian formulation of continuum theory
as developed above becomes a set of non-linear PDE which is solved using high-order temporal
scheme to capture the transients and high-order spatial schemes to resolve all of the scales in the

continuum field. The three fundamental invariants of B now simplify to

8U1

I = tr(B) =2+ (1+—-—)
B I'( ) + ( + 8X1)
Iy = 3 (trB)* — (tr B*)) = 1+ 2(1+ 8X1) (E.33)
My = detB = &2—(1+%)2
v S \p) 90Xy
and
Po Jduy
J = 22— 14 === E.34
P *ax; (E.34)
_ 8u1 _ _
Y= 1+ 8—X1) V=t (E.35)
First, the equation of mass balance becomes
ap 8U1 -1 8’01
r 14 — - = E.
ot +p< + 8X1> ox, (E-36)
The linear momentum balance becomes
8’01 0 8U1 8U1 =1
o— = — sl +—=—=)— pu(l I=2vs — pRT
P = g A )~ g =
Quy 1 Op vy duy |4
— 14+ —) " —X 2 ) ——(1 + — E.37

where the quantity in the curly bracket is the referential stress quantity (PK-1 stress) as discussed

previously. The displacement is related to velocity via

8U1

E = V1 (E38)
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The balance of energy takes a simpler form as

aT aul -1 3 8U1 -1 8T
L gy 2y 9 (g 2y O
P T+3x) ax, <( *ax,) 8X1>

31)1 8u1 2
+or+2p) (+ ™)

+B (%(f) + B, (88?) +Tp <ﬁm'§m+ﬂv%> 5 T Qc
+us§X1 — s +§—X11) 1253X1—PRT(1+38—2)138§11

The phase equation also takes on a simpler form:

0 0 0 0 0
55 = (gt (e g )

Yot 0X,’ 0X, 0X," 0X,
P duy
- 1+ —)2—1
us(so)2po(( +8X1) )
o p(l —21/5) ouq (1—72% B
i) 252 (0 2y -

treste) (T = (@ = 1)) = o322 2L (U)o = Do - D))

T-T,, / T-T,
Qm — P,BU(QO) T Qv (E.40)
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E.4 Two-Dimensional generalization of continuum laws

The continuum theory as discussed in this thesis are general in that two dimensional extensions can
be presumed in a straightforward manner. Before developing the corresponding balance laws, we
first state some of the usual expressions which are called upon readily. The displacement gradient

tensor H 1is such that

Juy ouy

H - | ™% % (E.41)
Juy Ous
00X, 0Xo

and the left Cauchy-Green tensor (B = B ') becomes

(1+ Hp)? + HE, (14 Hyy)Hoy + Hio(1+ Hoy) 0
B = | (1+ Hy)Hy + Hy(1+ Hy) H2, + (1+ Hy)? 0 (E.42)
0 0 1
Thus, by means of B2, we have the following expression:
trB® = B} + B} + Bis
= (1+Hp)* +2H%(1+ Hiy)? + H
+Hj, +2H3, (14 Hyp)? + (1 + Hyp)' + 1. (E.43)
Likewise, we further obtain the following:
(tr B)? = ((1+Hu)*+ (14 Hy)*)* + (Hiy + H3 +1)°
+2((1 + Hi1)* + (1 + Ha)?)(Hi, + H3, +1) (E.44)
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We also find that

(1+ Hyy)? + HE, (1+ Hy1)Hoy + Hio(1 + Hop)
B-L = | (1+Hu)Hy + Hiz(1 + Hy) HZ, + (1 + Ha)?
0 0

0 0
= ((1+Hn)*+ H122)ﬂ +((1+ Hu1)Ho + Hio(1 + H22))ﬂ

ox dy
8’02

P
(14 Hun) Hoy + Ho(1+ Hap)) 5 + (H2 + (1+ 1122)2)8%2

and

ur Ova
Jxr Oy

Further, we list the invariants of B as follows:

Ig = tI‘(B)

= (1 +H11)2 + (1 +H22)2 +H122 + H221 +1

2
My = detB = <@)
P)
= ((1+ Hu1)*+ HY)(Hs, + (14 Hy)?)

—((1 + Hy1)Hyy + Hip(1 + Hyy))?

Recall the constitutive expression for the equilibrium stress,

ol = MsﬁB - ,usﬁlﬂgl_z"s 1—pRT1- pﬁom'(T —T5) — p1,Ve @ Vo
o

Po Po
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0
0
1

ovy

Oz

vz

ox
0

vy
Oy

Ova

0 0

(E.45)

(E.46)

(E.47)



where

o = u L+ Hy)? + HY) - py

Po

Po

eq
012 =
eq _ _eq
091 = Oy12
eq
099 =

o

1

Po

,Usﬁ[(l + Hy1)Hoy + Hio(1 + Ha)) — pye

Po

As before, the dissipative part of the stress reads

where

and

We also note that

Thus,

dis

31)1
= il

+—==)[0 10

1 00

31)2 +
ay b

0 01
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T—2vs
(ﬁ) — pRT — ax(T —T,) — py,

Po
9p J¢
Oz Oy

T—2vg
w P LHZ (L4 H)) — (ﬁ) R - an (T~ 1) - p,

Po

o™ = v(tr D)1+ 2u;D
1 294 Guidm g
= = 0 0 0
= 5| 9Ft %y 252 0
0 0 0
87)1 81)2
trD = (2492
f ((91: 8y)
= Di;Dij

Qv vy 4 Ovy
2 ox Jy + ox
Ovy | Ovy i)
ox + oy 2 oy
0 0

<g—i) (B.48)

(E.49)

(E.50)

<g—z) 2(E.51)

(E.52)

(E.53)

(E.54)

(E.55)



In the conservative form, the momentum equations thus become

2
puy — o011

g pU1 n 0
ot ox

0 pu1U2 — 012
pU2 pUIV2 — 021 Y

2
puy — 022

where the Cauchy stress components are given by

o = ,usp—po[(l + Hp1)? + HE) — ps <£) . pRT — om‘ﬁ(T —T,) — pYe <gi)2
+uf(%+88—v;)+2 f% (E.56)
o2 = Msﬁo[(l + Hy1)Hay + Hio(1 + Hag)] — P%g—ig—j + M(%—QZ + %) (E.57)
o1 = o019 (E.58)
o9 = Hsi[Hgl + (14 Hx)?] — ps <£) T pRT — Omp—po(T =T5) = pvy <g—(§)
+uf(%+%)+2 f%—U; (E.59)
The displacement gradients assume the following relationship:
ag;n v ag; +q;28§21 — 88”1(1 + Hyp) + %—y(ﬂm) (E.60)
Bgftu + o (9;112 n 28(1;1;12 _ %vl (Hyo) + 881;1( + Hy) (E.61)
81;;21 T 85;1 T vy 821;21 - a;; (Ho1) + %(1 + Hyy) (E.62)
81;22 v agf + vy 82‘22 = ag;(l + Hyy) + %—(le) (E.63)

The energy balance becomes

0 0 1 *T | O°T dvi | dva\’
T — T, = —<(K(—|—+— oty Ze
(925('0 )+8 (porT) cv{ (Bx%+8y2)+yf<8a:+ 8y)

0 o \2 1 [/0vy Ous\> [0\ L
~ (pvoT 2 — S =4+ == — B
+8y(pv2 ) +Hf(<8:z:) 2<8y+8:z:) + Oy )+ B¢

N l ,Z . 8’01 8’02
+p(ﬂme Qm +ﬁvTv Qu) — pRT (—830 + n )
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The phase-field equation now reads

d d 0 p PFPo  Po.  p
i -~ - - F i T o W A R
500)+ gmon) + glopn) = &l G + )~ el =
o p(1—=2v5)
P TS o T
S 2POVS ( B )
P qwell d 2
_Pguwetr 7 “ (g -2
5 8¢“M¢ (e —2))%}
T-T T-T
—p,@;n QO _P/le; T va}
m v
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Appendix F

Derivation of Classical Sharp
Interface Problems as Asymptotic
Limits of the Phase-Field Equations

F.1 Introduction

Using detailed asymptotic analyses of the dynamics of the phase-field model as presented in this
thesis, we show that the major sharp-interface models (Stefan, modified Stefan, and Hele-Shaw)
are recovered as limiting cases of the temperature and phase evolution equations. Distinct physical
parameters of the model are first recognized, and then the proper scaling of these microscopic
parameters allows us to derive a set of macroscopic sharp-interface models of solidification. We

close follow Caginalp[l‘r’l.

F.2 Preliminaries

F.2.1 Sharp interface model problems

A set of macroscopic equations that incorporate latent heat across an interface, heat diffusion, and
surface tension on the interface, can be described as follows. It is assumed that the continuity and
the momentum balance are satisfied and that the material undergoes only a single phase transition

from solid to liquid with zero deformation and chemical reaction. The function u(z,y,t) represent
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temperature and a surface ['(#) represents a time dependent interface such that

ou

i KV?u in Q/T(t) (F.1)
lv = —K[Vup+ in I'(¢) (F.2)
u = —E(n‘ + av) in I'(t) (F.3)

where [ is the latent heat, v is the interfacial velocity in the direction normal to the surface I'(¢), o
is the surface tension, « is a nonzero constant, & is the local interfacial curvature (V?r), and As is
the entropy difference of the two phases (As = [/T,,). By allowing 0 — 0, we obtain the classical

Stefan problem. [15]

If o is finite, the modified Stefan solidification problem emerges. Further, the
condition Kk = 0 describes plane-front solidification.

Another limit, known as the quasi-static approximation in phase boundary problems arising

from condensed matter physics,[w} is described as follows:
0 = KV in Qy,Q/T'(t) (F.4)
lv = —K[Vu]® in T'(t) (F.5)
u = —é(n +av)  inI(t) (F.6)

where the heat diffusion occurs so rapidly in the interface such that the process is steady state.
In some context, namely in fluid mechanics, u may represent the pressure between two immiscible

fluids. Such a problem is called the Hele-Shaw model.'”)

F.2.2 Phase-field model problems

Unlike the macroscopic description of the interface as in the sharp interface models (e.g. modified
Stefan, classical Stefan, and Hele-Shaw), the phase-field model arises as a microscopic counterpart
such that there is an order-parameter ¢, which takes a value of 0 in the solid phase and a value of
unity in the liquid phase. With zero deformation and absence of chemical reaction, one conservative

equation for the temperature (u) field and a non-conservative evolution equation for ¢ are derived
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earlier as follows:

. . ’ u
pCpis =V + (KVu) + By¢® + +p (Zm(SO)T—
m

By = V- (ppyVe) - p%wwe“% (1e)p ~ 1) = prtul)

Qm (F.8)

where the material derivative (dot) in this context becomes a simple time derivative and the heat
of melt @), is by definition the negative of latent heat [ in the sharp interface models. The interface

I'(¢) in this phase-field model is defined as
I'(t) = {& € Q; u(@,t) = Tn, p(e,t) = 1/2}.

It is the intent of this thesis that as we take the asymptotic limits of the phase-field model
equations, the sharp interface models are recovered. In particular, the asymptotic treatment of
the evolution equations for u and ¢ is justified if the interface thickness scale (B, p1,) and the
potential well depth scale (a ~ 1/ \Pwell) approach zero in the Stefan limits, and the condition
K/pC, — oo describes the Hele-Shaw limits. For the sake of simplicity, we assume pCj, = 1 and
pit, = constant such that p is also considered constant. The forthcoming sections will discuss the
details of recovering the classical solidification models upon taking the matched asymptotic limits
on the governing phase-field equations in (F.7), (F.8). As a reference, we will follow the procedure

[15]

as outlined in Caginalp'™ in taking the asymptotic limits of our phase-field model.

F.3 Sharp interface limit with finite surface tension (Modified

Stefan model)

In the limit B, pu,,a — 0 with (B,/a)'/? and (u,/a)'/? remaining fixed, there exists a formal

asymptotic solution of the phase-field model (F.7), (F.8) that is governed by the modified Stefan
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model (F.1)-(F.3). We start the analysis by introducing the following scales:

By~ py ~ €, clz\/e/_a
Assuming pCj, = 1, we can write (F.7) as
w = KViu+ep®+ pz;@uQ—:n"% (F.9)
As for the phase equation, we allow that pu, be pulled out of the divergence operator and let

a=1/ \Pwellj such that the resulting equation reads

I U—Tm

1
Bopr = pueVie — pag(p) — pry—— Qm (F.10)
% T,

where we have introduced a new function

After properly introducing the scales, the resulting phase equation becomes

2 /
2o = 28V - flp) - 2eip 2 = T) (F.11)

m

where we also introduce a notation

gg(w) = cigle) = f(¥)

In order to carry out an asymptotic expansion on (F.9) and [F.11], we first expand the variables

u and @ in their original coordinates (i.e. outer expansion) as

u(z,y,te) = u®(z,y,t) +eu(z,y,t) + O(e?)

oz, y,te) = o O(z,y,t) + eV (z,y,t) + O(?)

As for the inner expansion, we introduce a moving coordinate system (r, s) where r is defined normal

215



to the interfacial surface ['(¢) so that it is positive from the solid (¢ < 1/2) to liquid (¢ > 1/2). Let

s be a measure of arc length from some fixed point. Further we introduce a stretched coordinate

so the expansion with the inner variables U and ¢ are given by

w(@,y,te) = Uz s,te) =U(z5,1) +eUW(z,5,1) + O()

r(x,y,te) = rO 4 e 4 O(€?)
s(z,y,te) = 9 4+esM) 4+ 0(e?)

Furthermore, the interface I'(¢f) may be described as the set of points at which (z, y, t) vanishes.

In the neighborhood of I', the following is true:

Vr|=1, V=&

The potential well function f(¢) may also be expanded in € such that

(1))2
£0) = F6O) +ef'(6)p) 4 & | () + 16 L | 4 o(e
for the outer variables, and as for the inner variable the expansion becomes
1 2 2 (¢19)?
F(@) = @) +ef (@) + ¢ | F1(9 ) + £(9) == | + O(e")
Outer Ezpansion
O(1) :
ugo) = KVi 4 pz;nu(o)g—mgogo) (F.12)
F@?) =0 (F.13)
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Equating the phase equation, we find that

0
16" = dg g {le e -1}

= 3200 —1)(2Y ~1) =0

where the system admits three roots of which <p(0) = 0,1 are the two solutions of the outer limits.

Thus the temperature evolution equation for (%) becomes a classical heat diffusion equation
AV = KvI© (F.14)
Inner Ezpansion In the moving coordinate system, the Laplacian operator can be written as

Viu = wup 4+ Viru, + |Vs|2uss + V2su,

1 1
= U+ EV%«UZ + |Vs|2Uys + V25U,
and the time derivative becomes

%u(r, S,t) = ug+ Uy + Spus

1
= Ut + E’I‘tUZ + StUs

Then (F.9) and (F.11) are expressed in the new coordinate system as

KU, +e [KVQTUZ — U, + pz;nUg—mrt@] + e[ ]+ €E[] =0 (F.15)
As for the phase equation, we obtain
2 2 ! Qm 2 o
2022 — f(¢) +€|2Vre, — ;Tt¢z ~ 2z (U =Tn)| +€-] =0 (F.16)
m

The first order problems are

O(1) :
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Ul =0 (F.17)

Y24

201 — f(¢V) =0 (F.18)

The solution to (F.17) is U®) = az 4 4. Using the matching condition at z — oo, & must be zero
for the solution to be bounded. Then the unknown § is independent of z such that g = [(s,t).
Thus the first order temperature solution is independent of the stretched coordinate z. As for the

phase solution, the matching condition suggests that

$O(z > +00,t) = oOTY 1)

= 0Oorl (F.19)

And recalling the interface definition such that ¢(%)(0,) = 1/2 specifies the surface I'(t), we may

deduce the following;:
¢z st = ¢90) (F.20)

In summary, the first order phase equation admits a set of homogeneous boundary value problem:

Ly = 2¢() - f(¢") = 0 (F.21)
¢ (£o0) = 0 or 1 (F.22)
¢ = 1/2 (F.23)

The O(e) problems of the inner solution becomes

O(e):

KU = 000 — K9 OU — e, Iy ,40 40
= +pz;n§—mU<0>v¢g°) (F.24)
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2
2000 = 1991 + 273090 — =g

0 2z;nCT2—m(U<°> —Tp) =0 (F.25)

The jump condition or the latent heat condition of the modified Stefan problem can derived from

considering (F.24). Integrating from —oo to 400, one finds

Tt i

KUY

= —pgBud

— 00

where we have made substitutions for | = —Q,,, and g = U, Applying the Neumann matching
condition gives

T + (F26)
So the jump condition at the interface becomes the following:
K| = =21 - F.27
K] = - -0) (¥.27)
PZm
= l F.28
oy (1.25)

Now it remains to recover the third equation of the sharp interface model, namely the temperature
profile within the interface I'(t). Rewriting the O(e€) equation for the phase in (F.25) as

Lo = 26 — F(4O)sD = ~Zug® — arg - 2ol
p

with the solution of Lé®), we may construct a solvability condition as

!

—+oc
R [%wg” 2ng® + 20O 1)

—0 m

dz =0

Since U is independent of z, we may perform the integral operator further such that

!

Znl o gy -0+ Corzn) [ @07 = 0 (F.30)

If we introduce a surface tension which is defined by the integral, o = fj;j’(¢§°))2dz, the equation
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above further simplifies to

N

Using the matching condition

we finally recover (closely) the temperature profile within the interface region for the modified

Stefan sharp interface model:

2y (WO, —T) = S <2 + /<a> (F.31)
where we have used the definition of the entropy difference of the two phases, namely As = [/T,,.

In the asymptotic limit as €,a — 0 while holding \/e/—a = constant, we have successfully recov-
ered the first of the three sharp interface model of condensed matter physics, namely the modified
Stefan solidification problem. In summary, equations (F.14), (F.28), and (F.31) are identical to
the model equations in (F.1)-(F.3). In the subsequent sections, two other classical sharp interface
models will be derived using the similar matched asymptotic expansion technique as discussed in

this section.

F.4 Sharp interface limit with zero surface tension (Classical

Stefan model)

We choose a particular scaling such that there is only one parameter (€) in the asymptotic limit.

4 — 2.2
By, ~py,~€, a=c¢€c,
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Thus in the limit €2 — 0 holding ¢, = /€% /a fixed, the asymptotic expansions of (F.7) and (F.8)

will be justified and they resemble the following expressions:

w = KViu+eo?+ pz;an—mwt (F.32)
m
2 /
200 = 26V~ [(p) ~ 2%y 2 (0~ ) (F.33)
pP m

where we have used the definition f(p) = c2g(p) as in the previous analysis. Both outer and inner

expansions of the variables u and ¢ remain unchanged from the previous section except that we

now introduce a different stretching of the normal coordinate z such that

Outer Ezpansion

O(1) :

ugo) = KVZu0 + pz;nu(o)g—mtpgo) (F.34)

F®) = 0 (F.35)

This is identical to the case of modified Stefan such that we clearly recover the classical heat

diffusion equation as

AV = KvI© (F.36)
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Inner Ezpansion In the interior, the Laplacian and the time derivative on the inner variables

are written as follows:

Viu = wup + Viru, + |V3|2uss + VZsu,
1 1
= Ut 6—3V27“UZ + |Vs|2Uys + V25U,
—u(r,s,t) = ug+ ru, + Spus

1
= U+ e—3rtUz + s¢Us

In the transformed coordinate system ((z,y,t) — (z,s,t)), we may rewrite (F.32) and (F.33) as

follows:
KU,, + é [KV%«UZ —rU, + pz;nUg—mrthz] +O(®) = 0 (F.37)

As for the phase, (F.33) becomes

os = 0) + & [ 20 )| 4 € | g 12950 L0 =0 (Raw)

O(1):

Ul =0 (F.39)
200 — (V) =0 (F.40)

The solution boundedness on U requires U to be a constant in z such that U® = g (s,t) as before.
Similarly the phase order parameter ¢(*) is function only of z, following the same argument as in

the previous section. In short,

U® = B(s,t) (F.41)

p0 = $O(z) (F.42)
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In order to recover the classical Stefan limit, one needs to show that §(s,t) = 0 such that the
interfacial temperature profile is identically zero (i.e. u|p, = 0). To do so, we need higher-order

expansions in e:

O(e) :

vl = o

2680 — f'(¢O)¢!V =0

~

<
c
Il

v o
! 1))2
LD = 29 - g0 = Znm o) g 4 pr(p) )
Solving the homogeneous system in O(e€), we discover that
oM = 40 (F.43)

and thus we may arrive at a solvability condition on the O(e?) system such that

!

oo (1)
/_ o [f"(gb(‘”)@ + ?—:Qmw@ ~ T)

dz =0

Here, we argue that f, f” are odd, and f’,¢(!) are even. Thus the condition becomes

Since the integral reduces to a unity, the condition is held true if the temperature in the interface

is identical to the melting temperature such that we recover the second equation of the classical
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Stefan solidification problem:
uwlly) = T (F.44)

It is noted that in the dimensionless theory of Stefan model problems, the melting temperature is
assumed to be zero with a proper introduction of scalings. For generality, we will assign a finite
value of that melting temperature as 7T, for the remainder of the discussions.

The third equation of the classical Stefan limit is the latent heat condition identical to (F.28)

in the modified Stefan limit. To consider it, we need the O(e®) expansion of temperature:

O(e3) :

(3) 2,.77(0) (0)77(0) , U0 0) _
KU;; + KVorU;” —r, U + pz,,—lvgy’ = 0

Since U®) = T,, on 'y, we may further simplify the expression such that
KUY = —pzy o)’

Upon integrating and observing the jump condition on the gradient, we obtain

+ :
KU®) - —pz,, v

z
— 00

With the matching condition

U®)(z = +o0,t) = ulO(I'x,1)

we finally recover the latent heat condition of the classic Stefan problem:
K [’u?(no)} = —pz;n lv (F.45)
Iy

In summary, equations (F.36), (F.44), and (F.45) are the asymptotic limiting solutions of the
phase-field model equations and they are in fact the classical Stefan limits of the sharp interface

models in (F.1)—(F.3) with zero surface tension.
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F.5 Quasi-static limit (Hele-Shaw model)

In the quasi-static limit, the constants (I, K, «) have different meanings from the earlier sense.

Further, we expect to associate the variable u as the hydrodynamic pressures with ¢ being the

interfacial tension between two fluids. We first list the scaling of the parameters as

Bywpgme Knlle o= efa, e=v

In addition, we further require the scaling

(u—"Ty) ~ eu

such that heat diffuses very rapidly in the interface such that the quasi-static approximation will

hold justified. Assuming pC, = 1 again, we rewrite (F.7) as

U

cw, = Vu+ e’ — pa,——cp
T
and the phase equation in (F.8) becomes
2 2 _ 292 Zm 2
o = 2Vp— fp) + 2 cu
P T

where we have used the fact that (u — T},,) ~ u and 2g(¢) = f(y).

Outer Ezpansion

0(1):

, u(0)
v = i, 2

(F.46)

(F.47)

(F.48)

(F.49)

Since <,0(0) =1 or 0 in the outer layer, we recover the first condition of the Hele-Shaw limit, namely

the pressure Laplacian equation,

vZul® = 0
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Inner Ezpansion Along with transforming the coordinate from (z,y,t) — (r,s,t), we use a
stretching scales of the form

T
Z = -
€

which is the same stretching as in the modified Stefan problem. Now, the Laplacian and time

derivative operators transform to
2 1 1 _o 2 2
Viu = U, +-VrU, + |Vs|“Uss + VZsUs
€ €

and the time derivative becomes

d v

—U(’F, Sat) = Ut - _Uz + StUs

dt €

Then the resulting equations for U and ¢ after transforming (F.46) and (F.47) become the following:

EU, — U, + Es,U, = U,, +eVZrU, + €2|VS|2U55 + 62(V28)U5
2 v
+e4<,0% — EpImycs ((pt ——p,+ st<p5> (F.51)
Tm €
2
; (62(pt — evyp, + 623,5(,05) = 2 ((pzz + eVirp, + 2| Vs[2p,s + €2V28(p5)
2z;n 9
—ef(p) + cu (F.52)
T,

The first order problems are

o) :

Ul =g (F.53)
2609 — f(¢) =0 (F.54)
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Following the argument in the modified Stefan limit, we obtain U(®) = f(s,t). We also obtain the

governing boundary value value problem for the phase:

Ly = 201 — f(¢) = 0 (F.55)
¢ (£o0) = 0 or 1 (F.56)
#00) = 1/2 (F.57)

The O(€) problems of the inner solution becomes

O(e):

Ul = —p U Ocugl? (F.58)
m
2
S = 20 + 29390 — g0 + 272U (£.59)

Recalling ¢3 = I/K, we find the latent heat condition from integrating the above equation for u

such that
[ugo)]i = —gv (F.60)
where we have used the matching condition of
UM (£00,t) = ul® (I, t)
As for the third condition of the Hele-Shaw limit, we consider the phase equation in (F.59):

2 22
LW = 20 — f(¢V)p) = —;v¢§°> — 2ng¥) — U (F.61)

m
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The solvability condition gives

+oo 2 2z,
/ P [—vq)gﬂ) + 2k + T—mc§U<°> dz = 0
p

—0 m

Using the surface tension ¢ as defined earlier, we arrive at the expression for the pressure distribu-

tion in the interface,
O = g2 (2 F.62
Uu |Ti As <p+l€) ( 6)
where we have used the matching condition,
U9 (+00) = u(0)|ri

and the fact that As =1/T),.
Clearly, we have successfully recovered the Hele-Shaw model of solidification upon taking the

asymptotic limits on the phase-model equations in [F.7] and [F.8].
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Appendix G

Code Index

We list all codes used to generate the numerical simulation results contained in the thesis. A brief
description of each code is given. Available on a CD-ROM disc is a copy of the codes in different

folders with makefiles and subsidiary input files needed to compile and generate the executable.

Solvers of Chapter 3

e longitudinal.f (1-D): One-dimensional code of HMX model used in the longitudinal motion

analysis.

e shear.f (1-d): One-dimensional code of HMX model used in the shearing motion analysis.

Multi-material solvers of Chapter 4 (EM)

e ring-up.f (1-D): One-dimensional code based on the ghost-fluid-method (GFM) to simulate a

piston driven laminate of two different gases.

e hot-spot.f (1-D, spherically symmetric): One-dimensional code based on GFM to simulate the

hot-spot formation in solid HMX.

e shear-induced-melting.f (2-D): Two-dimensional code used to generate a wavy interface be-

tween two Blatz—Ko solids with phase change in a shearing motion.

e plate-cutter-1.f (2-D): Two-dimensional code using GFM to simulate the HE /Blatz-Ko plate/fluid

interactions.
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Multi-material solvers of Chapter 5 (Metal)

e shocktube.f (1-D): One-dimensional code using a level-set to calculate the standard shock-tube

test involving two gases of different +’s.

e Taylor-rod-impact.f (2-D): Two-dimensional code used to reproduce the standard rod-impact

test of copper.

e rate-stick-1.f (2-D): Two-dimensional code built to reproduce the rate-stick result of Aslam

and Bdzil using Amrita.

e rate-stick-I11.f (2-D): Two-dimensional code used to simulate a rate-stick with a copper con-

finement.

e cxplosive-welding.f (2-D): Two-dimensional code built to simulate the welding of a copper and

steel plates.

e plate-cutter-11.f (2-D): Two-dimensional code using two level-sets to simulate the HE/Cu/Void

interactions upon penetration of a spherical detonation wave into the copper plate.

230



References

[1]
2]

T. D. Aslam and J. B. Bdzil. Private communication. Los Alamos National Laboratory, 2001.

T. D. Aslam, J. B. Bdzil, and D. S. Stewart. Level Set Methods Applied to Modeling Detona-

tion Shock Dynamics. Journal of Computational Physics, 126:390-409, 1996.

G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press,
1967.

D. Bedrov, G. D. Smith, and T. D. Sewell. Temperature Dependent Shear Viscosity Coeflicients
of HMX, a Molecular Dynamics Simulation Study. Journal of Chemical Physics, 112:7203—

7208, 2000.

D. M. Belk. Class notes. U. S. Air Force Research Laboratory, Eglin Air Force Base, Fla.,
1999.

D. J. Benson. Computational Methods in Lagrangian and Eulerian Hydrocodes. Computer

Methods in Applied Mechanics and Engineering, 99:235-394, 1992.

D. J. Benson. A Multi-Material Eulerian Formulation for the Efficient Solution of Impact and

Penetration Problem. Computational Mechanics, 15:558-571, 1995.

D. J. Benson. Eulerian Finite Element Methods for the Micromechanics of Heterogeneous
Materials: Dynamic Prioritization of Material Interfaces. Computer Methods in Applied Me-
chanics and Engineering, 151:343-360, 1998.

E. W. Billington and A. Tate. The Physics of Deformation and Flow. New York: McGraw-Hill,
Inc., 1981.

231



[10]

[11]

[12]

[13]

[14]

T. L. Boggs. The Thermal Behavior of Cyclotrimethylenetrinitramine (RDX) and Cyclote-

tramethylenetetranitramine (HMX). Progress in Astro. and Aero, 90:121-175, 1984.

R. M. Bowen. Part I: Theory of Mixtures, in Continuum Physics, Vol III Miztures and

Electromagnetic Field Theories. A. C. Eringen, ed. Academic Press, 1976.
R. M. Bowen. Introduction to Continuum Mechanics for Engineers. Plenum Press, 1989.

T. B. Brill. Multiphase chemistry considerations at the surface of burning nitramine mono-

propellants. Journal of Propulsion and Power, 11:740-750, 1995.

J. D. Buckmaster and G. S. S. Ludford. Theory of Laminar Flames. Cambridge: Cambridge

University Press, 1982.

G. Caginalp. Stefan and Hele-Shaw Type Models as Asymptotic Limits of the Phase-Field
Equations. Physical Review A, 39:5887-5896, 1989.

G. Caginalp. A Microscopic Derivation of Macroscopic Sharp Interface Problems Involving

Phase Transitions. Journal of Statistical Physics, 59:869-884, 1990.

G. Caginalp and E. A. Socolovsky. Computation of Sharp Phase Boundaries by Spreading:
The Planar and Spherically Symmetric Cases. Journal of Computational Physics, 95:85-100,
1991.

Herbert B. Callen. Thermodynamics: an Introduction to the Physical Theories of Equilibrium

Thermostatics and Irreversible Thermodynamics. New York: John Wiley & Sons, Inc., 1985.

G. T. Camacho and M. Ortiz. Adaptive Lagrangian modelling of ballistic penetration of
metallic targets. Computer Methods in Applied Mechanics and Engineering, 142:269-301,
1997.

D. Chakraborty, R. P. Muller, S. Dasgupta, and W. A. Goddard. The Mechanism for Uni-
molecular Decomposition of RDX (1,3,5-Trinitro-1,3,5,-triazine), an ab Initio Study. Journal
of Physical Chemistry, 104:2261-2272, 2000.

232



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

C. H. Chiang, M. S. Raju, and W. A. Sirignano. Numerical Analysis of Convecting, Vaporizing
Fuel Droplet with Variable Properties. International Journal of Heat and Mass Transfer,

5:1307-1324, 1992.

B. D. Coleman and W. Noll. The Thermodynamics of Elastic Materials with Heat Conduction

and Viscosity. Archive of Rational Mechanics, 13:245-261, 1963.

R. F. Davidson and P. J. Maudlin. A continuum code investigation of stress integration
using exact and approximate material rotation. Technical Report LA-12380-MS, Los Alamos

National Laboratory, NM, 1992.

B. M. Dobratz and P. C. Crawford. LLNL Ezplosive Handbook. Lawrence Livermore National
Laboratory, 1985.

A. D. Drozdov. Finite Elasticity and Viscoelasticity. New Jersey: World Scientific, 1996.

B. E. Engquist and B. Sjogreen. Robust difference approximations of stiff inviscid detonation

waves. CAM Report 91-03, University of California at Los Angeles, 1991.

R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A Non-Oscillatory Eulerian Approach
to Interfaces in Multimaterial Flows (The Ghost Fluid Method). Journal of Computational

Physics, 152:457-492, 1999.

R. P. Fedkiw, A. Marquina, and B. Merriman. An Isobaric Fix for the Overheating Problem

in Multimaterial Compressible Flows. Journal of Computational Physics, 148:545-578, 1999.

W. Fickett and W. C. Davis. Detonation. Berkeley, Calif.: University of California Press,

1979.

J. J. Goodier and P. G. Hodge. Elasticity and Plasticity. New York: John Wiley and Sons,
Inc., 1958.

D. J. Grove and A. M. Rajendran. Simulation of Flyer Plate-Rod Target Impact Experiment.
Shock Waves in Condensed Matter, 737740, 1987.

M. E. Gurtin. Configurational Forces as Basic Concepts of Continuum Physics. Mathematical

Sciences, vol. 137, New York: Springer, 2000.

233



[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

M. E. Gurtin. A Mechanical Theory for Crystallization of a Rigid Solid in a Liquid Melt:
Melting—Freezing Waves. Archive of Rational Mechanics and Analysis, 110:287-312, 1990.

K. S. Holian and B. L. Holian. Hydrodynamic Simulations of Hypervelocity Impacts. Int. J.
Impact Engineering, 8:115-132, 1989.

G. R. Johnson and W. H. Cook. Fracture characteristics of three metals subjected to various

strains, strain rates, temperatures and pressures. Engrg. Fract. Mech., 21:31-48, 1985.
A. Kamoulakos. A simple benchmark for impact. Bench Mark, 31-35, 1990.

A. S. Khan and S. Huang. Contiuum Theory of Plasticity. New York: John Wiley and Sons,
Inc., 1995.

D. B. Kothe, J. R. Baumgarduner, J. H. Cerutti, B. J. Daly, K. S. Holian, E. M. Kober,
S. J. Mosso, J. W. Painter, R. D. Smith and M. D. Torrey. PAGOSA: A Massively-Parallel,
Multi-Material Hydrodynamics Model for Three-Dimensional High-Speed Flow and High-Rate

Material Deformation. High Performance Computing Symposium, 9-14, 1993.
K. K. Kuo. Principles of Combustion. New York: Wiley-Interscience, 1986.
L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Oxford: Pergamon Press, 1989.

C. K. Law. Recent Advances in Droplet Vaporization and Condensation. Progress in Energy

and Combustion Science, 88:171-201, 1982.

X.-D. Liu and S. Osher. Convex ENO High Order Multi-Dimensional Schemes without Field
by Field Decomposition or Staggered Grids. Journal of Computational Physics, 142:304-330,
1998.

J. Lubliner. Plasticity Theory. New York: Collier Macmillan, 1990.

L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. New Jersey: Prentice-

Hall, Inc., 1969.

J. M. McGlaun, S. L. Thompson, and M. G. Elrick. CTH: A Three-Dimensional Shock Wave
Physics Code. Int. J. Impact Engineering, 10:351-360, 1990.

234



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

J. M. McGlaun, F. J. Zeigler, and S. L. Thompson. CTH: A Three-Dimensional, Large Defor-
mation, Shock Wave Physics Code. Shock Waves in Condensed Matter, 717-720, 1987.

R. Menikoff and T. D. Sewell. Constituent Properties of HMX Needed for Meso-Scale Simu-

lations. Submitted to Applied Physics Reviews, 2001.
M. A. Meyers. Dynamic Behavior of Materials. New York: John Wiley & Sons, Inc, 1994.

W. Mulder, S. Osher, and J. A. Sethian. Computing Interface Motion in Compressible Gas

Dynamics. Journal of Computational Physics, 100:209-228, 1992.
I. Muller. Thermodynamics. New York: Pittman, 1985.

S. Osher and J. A. Sethian. Fronts Propagating with Curvature-Dependent Speed: Algorithms

Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 79:12-49, 1988.

J. C. Oxley. Ezplosive Effects and Applications. J. A. Zuckas and W. P. Walters eds., Springer,
1997.

A. B. Pippard. FElements of Classical Thermodynamics for Advanced Students of Physics.

Cambridge: Cambridge University Press, 1966.

J.-P. Poirier. Introduction to the Physics of the Farth’s Interior. Cambridge: Cambridge

University Press, 1991.

J. Quirk. A Parallel Adaptive Grid Algorithm for Computational Shock Hydrodynamics. Appl.
Numer. Math., 20:427-453, 1996.

D. R. Dick. Engineering Sciences Data Unit Index. Engineering Sciences Data Unit Ltd., 1975.

M. S. Raju and W. A. Sirignano. Spray Computations in a Centerbody Combustor. Transac-
tions of ASME, 111:710-718, 1989.

F. Reif. Fundamentals of Statistical and Thermal Physics. New York: McGraw-Hill Book

Company, 1985.

M. Renksizbulut and M. C. Yuen. Experimental Study of Droplet Evaporation in a High-
Temperature Air Stream. Transactions of ASME, 105:384-388, 1983.

235



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

J. M. Rosen and C. Dickinson. Vapor Pressures and Heats of Sublimation of Some High

Melting Organic Explosives. Journal of Chemical and Engineering Data, 14:120-124, 1969.

G. A. Ruderman. A Countinuum Thermomechanical Model for Energetic Materials. PhD
thesis, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-

Champaign, 1998.

G. A. Ruderman, D. S. Stewart, and J. J. Yoh. A Thermomechanical Model for Energetic

Materials with Phase Transformations. Submitted to SIAM J. Appl. Math, 2001.

D. Scherrer. Combustion of a Non-Moving Droplet: Numerical Study of the Influence of the
Assumptions Leading to the D? Law. Recherche Aero, 25-37, 1985.

C.-W. Shu and S. Osher. Efficient Implementation of Essentially Non-oscillatory Schemes II.
Journal of Computational Physics, 83:32-78, 1989.

J. S. Shuen, V. Yang, and C. C. Hsia. Combustion of Liquid-Fuel Droplets in Supercritical
Conditions. Combustion and Flame, 89:299-319, 1992.

W. A. Sirignano. Fluid Dynamics and Transport of Droplets and Sprays. Cambridge: Cam-
bridge University Press, 1999.

P. R. Sparlart, R. D. Moser, and M. M. Rogers. Spectral Methods for the Navier-Stokes
Equations with One Infinite and Two Periodic Directions. Journal of Computational Physics,

96:297-324, 1991.
R. Strehlow. Fundamentals of Combustion. New York: Kreiger, 1978.

C. M. Tarver, S. K. Chidester, and A. L. Nichols ITI. Critical Conditions for Impact- and
Shock-Induced Hot Spots in Solid Explosives. Journal of Physical Chemistry, 100:5794-5799,
1996.

J. W. Taylor and R. J. Crookes. Vapour Pressure and Enthalpy of Sublimation of 1,3,5,7-
tetranitro-1,3,5,7-tetra-azacyclo-octane (HMX). Journal of Chemical Society. Faraday Trans-
actions I, 72:723-728, 1976.

236



[71]

[72]

[73]

[74]

[78]

[79]

[82]

P. A. Thompson. Compressible-Fluid Dynamics. Advanced Engineering Series, 1988.

J. Timmermans. Physico-chemical Constants of Pure Organic Compounds, v. 1, 2. New York:

Elsevier Publishing Co., 1965.

A. A. Wheeler, W. J. Boettinger, and G. B. McFadden. Phase-Field Model for Isothermal
Phase Transitions in Binary Alloys. Phyical Review A, 45:7424-7439, 1992.

R. G. Whirley and J. O. Hallquist. DYNA-3D User Manual. Technical Report UCRL-MA-

107254, Lawrence Livermore National Laboratory, 1991.
G. B. Whitham. Linear and Nonlinear Waves. New York: Wiley-Interscience, 1999.
F. A. Williams. Combustion Theory. Redwodd City, California: Addison-Wesley, 1985.

J. H. Williamson. Low-Storage Runge-Kutta Schemes. Journal of Computational Physics,
35:48-56, 1995.

A. A. Wray. Very Low Storage Time-Advancement Schemes. Internal Report Moffet Field,
Califo., NASA, 1986.

S. Xu, T. Aslam, and D. S. Stewart. High Resolution Numerical Simulation of Ideal and Non-
ideal Compressible Reacting Flows with Embedded Internal Boundaries. Combust. Theory
Modelling, 1:113-142, 1997.

J. J. Yoh and D. S. Stewart. High Resolution Multi-Material Hydrodynamics Model for High-
Rate Deformation with Detonating Explosives. To be submitted to Combust. Theory Modelling,
2001.

J. J. Yoh, D. S. Stewart, and G. A. Ruderman. A Thermomechanical Model for Energetic
Materials with Phase Transformations: Analysis of Simple Motions. Submitted to SIAM J.
Appl. Math, 2001.

J. J. Yoh and X. Zhong. Low-Storage Semi-Implicit Runge-Kutta Schemes for Chemically

Reacting Flow Computations. Submitted to Journal of Computational Physics, 2000.

237



[83]

[84]

[85]

[86]

[87]

[88]

J. J. Yoh and X. Zhong. Semi-Implicit Runge-Kutta Schemes for Stiff Multi-Dimensional
Reacting Flows. Paper 97-0803, ATAA, 1997.

J. J. Yoh and X. Zhong. Low-Storage Semi-Implicit Runge-Kutta Methods for Reactive Flow
Computations. Paper 98-0130, ATAA, 1998.

C. Yoo and H. Cynn. Equation of State, Phase Transition, Decomposition of S-HMX
(Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazoncine) at High Pressures. Journal of Chemical
Physics, 111:10229-10235, 1999.

A. Zenin. HMX and RDX: Combustion Mechanism and Influence on Modern Double-Base

Propellant Combustion. Journal of Propulsion and Power, 11:752-758, 1995.

Y. Y. Zhu and S. Cescotto. Unified and mixed formulation of the 4-node quadrilateral ele-
ments by assumed strain method: Application to thermomechanical problems. Int. J. Numer.

Methods Engrg., 38:685-716, 1995.

J. Zinn and R. N. Rogers. Thermal Initiation of Explosives. Journal of Physical Chemistry,
66:2646-2653, 1962.

238



Vita

Jack Jai-ick Yoh was born in Seoul, Korea, on March 4th, 1970. He began his education in the
United States in August 1986, attending Miramonte High School in Orinda, California. In May
1992, he received his B.S. in Mechanical Engineering from the University of California, Berkeley.
He then joined the Korean Army as a soldier. Returning to the United States, he entered the
University of California, Los Angeles, and completed his M.S. in Mechanical Engineering in June
1995. While pursuing the doctoral degree, he transfered to the Department of Theoretical and
Applied Mechanics at the University of Illinois at Urbana-Champaign, where he began working as
a research assistant for Professor D. Scott Stewart in Spring 1998. Parts of his research work have
been submitted to the SIAM Journal of Applied Mathematics, Combustion Theory and Modelling,

and Journal of Computational Physics.

239



